Abstract

This study is focused on numerical simulation analysis and experimental study regarding the influence of backscattering characteristics of objects for long-range laser voice acquisition. Based on theoretical analysis, three parameters, including surface roughness of an object, incident angle, and refractive index, which will influence the performance of remote scattered reflection laser interference voice acquisition, are investigated and analyzed. After analysis and simulation, an experimental system is set up to demonstrate the influence of backscattering characteristics of an object. The results show that the restored amplitude of a voice signal decreases gradually, corresponding to an increase of surface roughness from 0.4 to 12.5 μm; the incident angle of the measured laser shall reside between 57.32 deg (1 rad) and 57.32deg (1rad); the optimal incident angle is 0 deg for all kinds of objects; and the metal object is a better choice of material selection. In addition, the restored amplitude of a voice signal rises with the attenuation coefficient of metal increasing. It also increases with the refractive index for a nonmetallic object. Comparing a metal to a nonmetallic object, the amplitude of voice signal varies significantly.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zieger, A. Brutti, and P. Svaizer, “Acoustic based surveillance system for intrusion detection,” in Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (IEEE, 2009), pp. 314–319.
  2. C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based surveillance system,” in Proceedings of IEEE International Conference on Multimedia Expo.Amsterdam (IEEE, 2005), pp. 1306–1309.
  3. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17, 21566–21580 (2009).
    [Crossref]
  4. J. M. Mose and K. P. Trout, “A simple laser microphone for classroom demonstration,” Phys. Teach. 44, 600–603 (2006).
    [Crossref]
  5. D. Costley, J. M. Sabatier, and N. Xiang, “Forward-looking acoustic mine detection system,” Proc. SPIE 4394, 617–626 (2001).
    [Crossref]
  6. J. Shang, Y. He, and D. Liu, “Laser Doppler vibrometer for real-time speech-signal acquirement,” Chin. Opt. Lett. 7, 732–733 (2009).
    [Crossref]
  7. Z. G. Zhu, W. Li, and G. Wolberg, “Intergrating LDV Audio and IR video for Remote multimodal surveillance,” in Proceedings of IEEE International Conference on Vision and Pattern Recognition (IEEE, 2005), pp. 1063–6919.
  8. Y. Qu, T. Wang, and Z. G. Zhu, “Vision-aided laser Doppler vibrometry for remote automatic voice detection,” IEEE/ASME Trans. Mechatronics 14, 561–574 (2009).
  9. W. Li, M. Liu, and Z. G. Zhu, “LDV remote voice acquisition and enhancement,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 2006), pp. 262–265.
  10. T. Wang, R. Li, Z. G. Zhu, and Y. Qu, “Active stereo vision for improving long range hearing using a laser Doppler vibrometer,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2011), pp. 564–569.
  11. L. M. Brechovskich and O. A. Godin, Acoustics of Layered Media I: Plan and Quasi-Plane Waves, Vol. 5 (Springer, 1990).
  12. A. Tadeu and J. M. P. Antodnio, “Acoustic insulation of single panel walls provide by analytical expressions versus the mass law,” J. Sound Vibrat. 257, 457–475 (2002).
    [Crossref]
  13. J. R. Callister, A. R. George, and G. E. Freeman, “An empirical scheme to predict the sound transmission loss of single-thickness panels,” J. Sound Vibrat. 222, 145–151 (1999).
    [Crossref]
  14. A. Osipov, P. Mees, and G. Vermeir, “Low-frequency airborne sound transmission though single partitions in buildings,” Appl. Acoust. 52, 213–288 (1997).
  15. R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
    [Crossref]
  16. N. C. Bruce, “Kirchhoff calculations of the coherent scatter from a series of very rough surfaces,” Appl. Opt. 34, 5531–5536 (1995).
    [Crossref]
  17. K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from characterized random surfaces,” J. Opt. Soc. Am. A 4, 1194–1205 (1987).
    [Crossref]
  18. J. A. Sánchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
    [Crossref]
  19. R. E. Luna and E. R. Méndez, “Scattering by one-dimensional random rough metallic surfaces in a conical configuration,” Opt. Lett. 20, 657–659 (1995).
    [Crossref]
  20. A. K. Fung and M. F. Chen, “Numerical simulation of scattering from simple and composite random surfaces,” J. Opt. Soc. Am. A 2, 2274–2284 (1985).
    [Crossref]
  21. Y. W. Tong, H. L. Zeng, L. L. Li, and Y. Zhou, “Improved phase generated carrier demodulation algorithm for eliminating light intensity disturbance and phase modulation amplitude variation,” Appl. Opt. 51, 6962–6967 (2012).
    [Crossref]
  22. F. Ulaby, R. Moore, and A. Fung, Microwave Remote Sensing Active and Passing Volume2: Radar Remote Sensing and Surface Scattering Emission Theory (Artech House, 1986), pp. 319–323.
  23. H. L. Chan and A. K. Fung, “A numerical study of the Kirchhoff approximation in horizontally polarized backscattering from random surface,” Radio Sci. 27, 811–818 (1992).
    [Crossref]
  24. G. S. Brown, “Backscattering from a Gaussian-distributed perfectly conducting rough surface,” IEEE Trans. Antennas Propag. 26, 472–482 (1978).
    [Crossref]
  25. http://www.filmetrics.com/refractive-index-database/ .
  26. http://refractiveindex.info/ .
  27. J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
    [Crossref]

2012 (1)

2011 (1)

R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
[Crossref]

2009 (3)

2008 (1)

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

2006 (1)

J. M. Mose and K. P. Trout, “A simple laser microphone for classroom demonstration,” Phys. Teach. 44, 600–603 (2006).
[Crossref]

2002 (1)

A. Tadeu and J. M. P. Antodnio, “Acoustic insulation of single panel walls provide by analytical expressions versus the mass law,” J. Sound Vibrat. 257, 457–475 (2002).
[Crossref]

2001 (1)

D. Costley, J. M. Sabatier, and N. Xiang, “Forward-looking acoustic mine detection system,” Proc. SPIE 4394, 617–626 (2001).
[Crossref]

1999 (1)

J. R. Callister, A. R. George, and G. E. Freeman, “An empirical scheme to predict the sound transmission loss of single-thickness panels,” J. Sound Vibrat. 222, 145–151 (1999).
[Crossref]

1997 (1)

A. Osipov, P. Mees, and G. Vermeir, “Low-frequency airborne sound transmission though single partitions in buildings,” Appl. Acoust. 52, 213–288 (1997).

1995 (2)

1992 (1)

H. L. Chan and A. K. Fung, “A numerical study of the Kirchhoff approximation in horizontally polarized backscattering from random surface,” Radio Sci. 27, 811–818 (1992).
[Crossref]

1991 (1)

1987 (1)

1985 (1)

1978 (1)

G. S. Brown, “Backscattering from a Gaussian-distributed perfectly conducting rough surface,” IEEE Trans. Antennas Propag. 26, 472–482 (1978).
[Crossref]

Antodnio, J. M. P.

A. Tadeu and J. M. P. Antodnio, “Acoustic insulation of single panel walls provide by analytical expressions versus the mass law,” J. Sound Vibrat. 257, 457–475 (2002).
[Crossref]

Beiderman, Y.

Brechovskich, L. M.

L. M. Brechovskich and O. A. Godin, Acoustics of Layered Media I: Plan and Quasi-Plane Waves, Vol. 5 (Springer, 1990).

Brown, G. S.

G. S. Brown, “Backscattering from a Gaussian-distributed perfectly conducting rough surface,” IEEE Trans. Antennas Propag. 26, 472–482 (1978).
[Crossref]

Bruce, N. C.

Brutti, A.

C. Zieger, A. Brutti, and P. Svaizer, “Acoustic based surveillance system for intrusion detection,” in Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (IEEE, 2009), pp. 314–319.

Callister, J. R.

J. R. Callister, A. R. George, and G. E. Freeman, “An empirical scheme to predict the sound transmission loss of single-thickness panels,” J. Sound Vibrat. 222, 145–151 (1999).
[Crossref]

Chan, H. L.

H. L. Chan and A. K. Fung, “A numerical study of the Kirchhoff approximation in horizontally polarized backscattering from random surface,” Radio Sci. 27, 811–818 (1992).
[Crossref]

Chen, M. F.

Clavel, C.

C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based surveillance system,” in Proceedings of IEEE International Conference on Multimedia Expo.Amsterdam (IEEE, 2005), pp. 1306–1309.

Costley, D.

D. Costley, J. M. Sabatier, and N. Xiang, “Forward-looking acoustic mine detection system,” Proc. SPIE 4394, 617–626 (2001).
[Crossref]

Ehrette, T.

C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based surveillance system,” in Proceedings of IEEE International Conference on Multimedia Expo.Amsterdam (IEEE, 2005), pp. 1306–1309.

Favritius, T.

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

Freeman, G. E.

J. R. Callister, A. R. George, and G. E. Freeman, “An empirical scheme to predict the sound transmission loss of single-thickness panels,” J. Sound Vibrat. 222, 145–151 (1999).
[Crossref]

Fung, A.

F. Ulaby, R. Moore, and A. Fung, Microwave Remote Sensing Active and Passing Volume2: Radar Remote Sensing and Surface Scattering Emission Theory (Artech House, 1986), pp. 319–323.

Fung, A. K.

H. L. Chan and A. K. Fung, “A numerical study of the Kirchhoff approximation in horizontally polarized backscattering from random surface,” Radio Sci. 27, 811–818 (1992).
[Crossref]

A. K. Fung and M. F. Chen, “Numerical simulation of scattering from simple and composite random surfaces,” J. Opt. Soc. Am. A 2, 2274–2284 (1985).
[Crossref]

Garcia, J.

George, A. R.

J. R. Callister, A. R. George, and G. E. Freeman, “An empirical scheme to predict the sound transmission loss of single-thickness panels,” J. Sound Vibrat. 222, 145–151 (1999).
[Crossref]

Gingold, S.

Godin, O. A.

L. M. Brechovskich and O. A. Godin, Acoustics of Layered Media I: Plan and Quasi-Plane Waves, Vol. 5 (Springer, 1990).

Haapala, A. T.

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

He, Y.

Heikkinen, S. M.

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

Li, L. L.

Li, R.

R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
[Crossref]

T. Wang, R. Li, Z. G. Zhu, and Y. Qu, “Active stereo vision for improving long range hearing using a laser Doppler vibrometer,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2011), pp. 564–569.

Li, W.

Z. G. Zhu, W. Li, and G. Wolberg, “Intergrating LDV Audio and IR video for Remote multimodal surveillance,” in Proceedings of IEEE International Conference on Vision and Pattern Recognition (IEEE, 2005), pp. 1063–6919.

W. Li, M. Liu, and Z. G. Zhu, “LDV remote voice acquisition and enhancement,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 2006), pp. 262–265.

Liu, D.

Liu, M.

W. Li, M. Liu, and Z. G. Zhu, “LDV remote voice acquisition and enhancement,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 2006), pp. 262–265.

Luna, R. E.

Margalit, I.

Mees, P.

A. Osipov, P. Mees, and G. Vermeir, “Low-frequency airborne sound transmission though single partitions in buildings,” Appl. Acoust. 52, 213–288 (1997).

Mendez, E. R.

Méndez, E. R.

Mico, V.

Moore, R.

F. Ulaby, R. Moore, and A. Fung, Microwave Remote Sensing Active and Passing Volume2: Radar Remote Sensing and Surface Scattering Emission Theory (Artech House, 1986), pp. 319–323.

Mose, J. M.

J. M. Mose and K. P. Trout, “A simple laser microphone for classroom demonstration,” Phys. Teach. 44, 600–603 (2006).
[Crossref]

Myllyla, R. A.

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

Nieto-Vesperinas, M.

O’Donnell, K. A.

Osipov, A.

A. Osipov, P. Mees, and G. Vermeir, “Low-frequency airborne sound transmission though single partitions in buildings,” Appl. Acoust. 52, 213–288 (1997).

Qu, Y.

Y. Qu, T. Wang, and Z. G. Zhu, “Vision-aided laser Doppler vibrometry for remote automatic voice detection,” IEEE/ASME Trans. Mechatronics 14, 561–574 (2009).

T. Wang, R. Li, Z. G. Zhu, and Y. Qu, “Active stereo vision for improving long range hearing using a laser Doppler vibrometer,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2011), pp. 564–569.

Richard, G.

C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based surveillance system,” in Proceedings of IEEE International Conference on Multimedia Expo.Amsterdam (IEEE, 2005), pp. 1306–1309.

Saarela, J. M.

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

Sabatier, J. M.

D. Costley, J. M. Sabatier, and N. Xiang, “Forward-looking acoustic mine detection system,” Proc. SPIE 4394, 617–626 (2001).
[Crossref]

Sánchez-Gil, J. A.

Shang, J.

Svaizer, P.

C. Zieger, A. Brutti, and P. Svaizer, “Acoustic based surveillance system for intrusion detection,” in Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (IEEE, 2009), pp. 314–319.

Tadeu, A.

A. Tadeu and J. M. P. Antodnio, “Acoustic insulation of single panel walls provide by analytical expressions versus the mass law,” J. Sound Vibrat. 257, 457–475 (2002).
[Crossref]

Teicher, M.

Tong, Y. W.

Trout, K. P.

J. M. Mose and K. P. Trout, “A simple laser microphone for classroom demonstration,” Phys. Teach. 44, 600–603 (2006).
[Crossref]

Ulaby, F.

F. Ulaby, R. Moore, and A. Fung, Microwave Remote Sensing Active and Passing Volume2: Radar Remote Sensing and Surface Scattering Emission Theory (Artech House, 1986), pp. 319–323.

Vermeir, G.

A. Osipov, P. Mees, and G. Vermeir, “Low-frequency airborne sound transmission though single partitions in buildings,” Appl. Acoust. 52, 213–288 (1997).

Wang, T.

R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
[Crossref]

Y. Qu, T. Wang, and Z. G. Zhu, “Vision-aided laser Doppler vibrometry for remote automatic voice detection,” IEEE/ASME Trans. Mechatronics 14, 561–574 (2009).

T. Wang, R. Li, Z. G. Zhu, and Y. Qu, “Active stereo vision for improving long range hearing using a laser Doppler vibrometer,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2011), pp. 564–569.

Wolberg, G.

Z. G. Zhu, W. Li, and G. Wolberg, “Intergrating LDV Audio and IR video for Remote multimodal surveillance,” in Proceedings of IEEE International Conference on Vision and Pattern Recognition (IEEE, 2005), pp. 1063–6919.

Xiang, N.

D. Costley, J. M. Sabatier, and N. Xiang, “Forward-looking acoustic mine detection system,” Proc. SPIE 4394, 617–626 (2001).
[Crossref]

Xiao, W.

R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
[Crossref]

Zalevsky, Z.

Zeng, H. L.

Zhou, Y.

Zhu, Z. G.

R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
[Crossref]

Y. Qu, T. Wang, and Z. G. Zhu, “Vision-aided laser Doppler vibrometry for remote automatic voice detection,” IEEE/ASME Trans. Mechatronics 14, 561–574 (2009).

Z. G. Zhu, W. Li, and G. Wolberg, “Intergrating LDV Audio and IR video for Remote multimodal surveillance,” in Proceedings of IEEE International Conference on Vision and Pattern Recognition (IEEE, 2005), pp. 1063–6919.

W. Li, M. Liu, and Z. G. Zhu, “LDV remote voice acquisition and enhancement,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 2006), pp. 262–265.

T. Wang, R. Li, Z. G. Zhu, and Y. Qu, “Active stereo vision for improving long range hearing using a laser Doppler vibrometer,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2011), pp. 564–569.

Zieger, C.

C. Zieger, A. Brutti, and P. Svaizer, “Acoustic based surveillance system for intrusion detection,” in Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (IEEE, 2009), pp. 314–319.

Appl. Acoust. (1)

A. Osipov, P. Mees, and G. Vermeir, “Low-frequency airborne sound transmission though single partitions in buildings,” Appl. Acoust. 52, 213–288 (1997).

Appl. Opt. (2)

Chin. Opt. Lett. (1)

IEEE Sens. J. (1)

R. Li, T. Wang, Z. G. Zhu, and W. Xiao, “Vibration characteristics of various surfaces using an LDV for long-range voice acquisition,” IEEE Sens. J. 11, 1415–1422 (2011).
[Crossref]

IEEE Trans. Antennas Propag. (1)

G. S. Brown, “Backscattering from a Gaussian-distributed perfectly conducting rough surface,” IEEE Trans. Antennas Propag. 26, 472–482 (1978).
[Crossref]

IEEE/ASME Trans. Mechatronics (1)

Y. Qu, T. Wang, and Z. G. Zhu, “Vision-aided laser Doppler vibrometry for remote automatic voice detection,” IEEE/ASME Trans. Mechatronics 14, 561–574 (2009).

J. Opt. Soc. Am. A (3)

J. Sound Vibrat. (2)

A. Tadeu and J. M. P. Antodnio, “Acoustic insulation of single panel walls provide by analytical expressions versus the mass law,” J. Sound Vibrat. 257, 457–475 (2002).
[Crossref]

J. R. Callister, A. R. George, and G. E. Freeman, “An empirical scheme to predict the sound transmission loss of single-thickness panels,” J. Sound Vibrat. 222, 145–151 (1999).
[Crossref]

Meas. Sci. Technol. (1)

J. M. Saarela, S. M. Heikkinen, T. Favritius, A. T. Haapala, and R. A. Myllyla, “Determination of the refractive index of paper with clearing agents,” Meas. Sci. Technol. 19, 055710 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Teach. (1)

J. M. Mose and K. P. Trout, “A simple laser microphone for classroom demonstration,” Phys. Teach. 44, 600–603 (2006).
[Crossref]

Proc. SPIE (1)

D. Costley, J. M. Sabatier, and N. Xiang, “Forward-looking acoustic mine detection system,” Proc. SPIE 4394, 617–626 (2001).
[Crossref]

Radio Sci. (1)

H. L. Chan and A. K. Fung, “A numerical study of the Kirchhoff approximation in horizontally polarized backscattering from random surface,” Radio Sci. 27, 811–818 (1992).
[Crossref]

Other (9)

Z. G. Zhu, W. Li, and G. Wolberg, “Intergrating LDV Audio and IR video for Remote multimodal surveillance,” in Proceedings of IEEE International Conference on Vision and Pattern Recognition (IEEE, 2005), pp. 1063–6919.

http://www.filmetrics.com/refractive-index-database/ .

http://refractiveindex.info/ .

F. Ulaby, R. Moore, and A. Fung, Microwave Remote Sensing Active and Passing Volume2: Radar Remote Sensing and Surface Scattering Emission Theory (Artech House, 1986), pp. 319–323.

W. Li, M. Liu, and Z. G. Zhu, “LDV remote voice acquisition and enhancement,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 2006), pp. 262–265.

T. Wang, R. Li, Z. G. Zhu, and Y. Qu, “Active stereo vision for improving long range hearing using a laser Doppler vibrometer,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2011), pp. 564–569.

L. M. Brechovskich and O. A. Godin, Acoustics of Layered Media I: Plan and Quasi-Plane Waves, Vol. 5 (Springer, 1990).

C. Zieger, A. Brutti, and P. Svaizer, “Acoustic based surveillance system for intrusion detection,” in Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance (IEEE, 2009), pp. 314–319.

C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based surveillance system,” in Proceedings of IEEE International Conference on Multimedia Expo.Amsterdam (IEEE, 2005), pp. 1306–1309.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Schematic of remote laser interference voice acquisition.

Fig. 2.
Fig. 2.

Backscattering coefficients of different roughness metal nickel alloy’s surface (the unit of Ra is μm).

Fig. 3.
Fig. 3.

Backscattering coefficients of different roughness nonmetallic PET surface.

Fig. 4.
Fig. 4.

(a) Backscattering coefficient of different incident angles. (b) Backscattering coefficient of different incident angles.

Fig. 5.
Fig. 5.

Backscattering coefficient of different metal objects; the roughness is fixed (Ra=1.6).

Fig. 6.
Fig. 6.

Backscattering coefficient of different metallic objects; the roughness is fixed (Ra=1.6μm).

Fig. 7.
Fig. 7.

Simulation results of 1 KHz voice signal for different rough surfaces.

Fig. 8.
Fig. 8.

Simulation results of 1 KHz voice signal for different incident angles.

Fig. 9.
Fig. 9.

Simulation results of 1 KHz voice signal for different metal materials.

Fig. 10.
Fig. 10.

Simulation results of 1 KHz voice signal for different nonmetallic materials.

Fig. 11.
Fig. 11.

Schematic diagram of experimental setup.

Fig. 12.
Fig. 12.

Results of 1 KHz voice signal for different rough surfaces.

Fig. 13.
Fig. 13.

Results of 1 KHz voice signal for different incident angles.

Fig. 14.
Fig. 14.

Results of 1 KHz voice signal for different metal materials.

Fig. 15.
Fig. 15.

Results of 1 KHz voice signal for different nonmetallic materials.

Tables (3)

Tables Icon

Table 1. Parameters of Specimens

Tables Icon

Table 2. Application of Objects

Tables Icon

Table 3. Characteristics of Objects

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(t)=A+Bcos[Ccos(ω0t)+Dcos(ωst)+φ(t)],
B=I1I2,
I1=A0σpqI04πR2,
I(t)=A0I04πR2σpqI2cos[Ccos(ω0t)+Dcos(ωst)+φ(t)].
σpq=|Rpq(0)|22m2cos4θexp[tan2θ2m2],
|Rpq(0)|2=|n1n+1|2,
m=2δT,
σpq=|n1n+1|22(2δT)2cos4θexp[tan2θ2(2δT)2].
I(t)=A0I04πR2|n1n+1|22(2δT)2cos4θexp[tan2θ2(2δT)2]I2cos[Ccos(ω0t)+Dcos(ωst)+φ(t)].

Metrics