Abstract

The fabrication method of the high-quality fiber microaxicons (FMAs) on the endface of the optical fiber was developed. Using several types of the commercially available optical fibers we experimentally demonstrated the fabrication of a high-quality FMA focusing a laser beam into a tiny spot with a FWHM0.6λ and Bessel-like field distribution. It was also demonstrated that choosing the appropriate chemical composition of the etching solution makes it possible to change the shape of the FMA tip from conical to hemispherical. This allows one to change the spatial distribution of the output laser beam, which can represent both the Bessel-like beam with a depth of focus of up to 49λ and a very tiny focal spot close to the diffraction limit size. Experimentally measured focusing characteristics of the fabricated FMAs obtained using a homemade collection-mode scanning near-field optical microscope setup demonstrate good agreement with numerical simulations based on the 3D finite-difference time-domain simulations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. McLeod, “Axicons and their uses,” J. Opt. Soc. Am. 50, 166–169 (1960).
    [CrossRef]
  2. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust. 2, 105–112 (1978).
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef]
  4. A. Piskarskas, V. Smilgevicius, V. Jarutis, V. Pasiskevicius, S. Wang, J. Tellefsen, and F. Laurell, “Noncollinear second harmonic generation in periodically poled KtiOPO4 excited by the Bessel beam,” Opt. Lett. 24, 1053–1055 (1999).
    [CrossRef]
  5. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
    [CrossRef]
  6. V. V. Kotlyar, S. S. Stafeev, L. O’Faolain, and V. A. Soifer, “Tight focusing with a binary microaxicon,” Opt. Lett. 36, 3100–3102 (2011).
    [CrossRef]
  7. A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
    [CrossRef]
  8. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33, 2155–2157 (2008).
    [CrossRef]
  9. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
    [CrossRef]
  10. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17, 2375–2384 (2009).
    [CrossRef]
  11. J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
    [CrossRef]
  12. S.-K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
    [CrossRef]
  13. Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
    [CrossRef]
  14. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).
  15. Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
    [CrossRef]
  16. Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
    [CrossRef]
  17. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061–8067 (2007).
    [CrossRef]
  18. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
    [CrossRef]
  19. M. Ohtsu, Progress in Nano-Electro Optics III/Industrial Applications and Dynamics of the Nano-Optical System (Springer, 2005).
  20. H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981).
    [CrossRef]
  21. www.thorlabs.com .
  22. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289–7292 (1998).
    [CrossRef]
  23. R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
    [CrossRef]
  24. D. R. Turner, “Etch procedure for optical fibers,” U.S. patent4,469,554 (4September1984).
  25. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
  26. S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48, 6172–6177 (2009).
    [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2000).
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  29. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009).
    [CrossRef]
  30. N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).
  31. T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
    [CrossRef]
  32. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fuji, “Two point separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11, 3271–3276 (2003).
    [CrossRef]

2013 (2)

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

2011 (1)

2010 (1)

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[CrossRef]

2009 (4)

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009).
[CrossRef]

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17, 2375–2384 (2009).
[CrossRef]

S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48, 6172–6177 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

2004 (1)

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

2003 (2)

2002 (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).

2001 (1)

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

1999 (2)

A. Piskarskas, V. Smilgevicius, V. Jarutis, V. Pasiskevicius, S. Wang, J. Tellefsen, and F. Laurell, “Noncollinear second harmonic generation in periodically poled KtiOPO4 excited by the Bessel beam,” Opt. Lett. 24, 1053–1055 (1999).
[CrossRef]

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

1998 (1)

1993 (1)

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef]

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

1981 (1)

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981).
[CrossRef]

1978 (1)

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust. 2, 105–112 (1978).

1960 (1)

Andrews, D. L.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[CrossRef]

Arakawa, Y.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

Bäuerle, D.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Berns, M. W.

Brown, C. T. A.

Cabrini, S.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Carpentiero, A.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Charraut, D.

Chichkov, B. N.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009).
[CrossRef]

Chow, T. H.

Cizmar, T.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[CrossRef]

Cojoc, D.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Davidson, N.

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).

De Angelis, F.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Deckert, V.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Degiorgio, V.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Dholakia, K.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[CrossRef]

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17, 2375–2384 (2009).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Di Fabrizio, E.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Eah, S.-K.

S.-K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Fokas, C.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Friedman, N.

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).

Fuji, M.

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Grosjean, T.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2000).

Hecht, B.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).

Heitz, J.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48, 6172–6177 (2009).
[CrossRef]

Herminghaus, S.

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef]

Herrington, C. S.

Hong, M. H.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

Ibrahim, I. A.

Iketaki, Y.

Ionin, A. A.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Jarutis, V.

Jhe, W.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

S.-K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

Kaplan, A.

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).

Koch, J.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009).
[CrossRef]

Kotlyar, V. V.

Kuchmizhak, A. A.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Kudryashov, S. I.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Kulchin, Yu. N.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Kuznetsov, A. I.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009).
[CrossRef]

Lambelet, P.

Laurell, F.

Lee, W. M.

Liberale, C.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Makarov, S. V.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Marcinkevicius, A.

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

Marquis-Weible, F.

Matsuo, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

Mazilu, M.

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

McLeod, J. H.

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

Misawa, H.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

Mizeikis, V.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

Mohanty, K. S.

Mohanty, S. K.

Mora, S.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Ng, B. K.

Noh, H.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

Noh, H. R.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).

O’Faolain, L.

Ohtsu, M.

M. Ohtsu, Progress in Nano-Electro Optics III/Industrial Applications and Dynamics of the Nano-Optical System (Springer, 2005).

Omatsu, T.

Pasiskevicius, V.

Pfeffer, M.

Philipona, C.

Piquerey, V.

Piskarskas, A.

Prasciolu, M.

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Romero, L. C. D.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[CrossRef]

Sakaguchi, H.

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981).
[CrossRef]

Sakai, M.

Saleh, S. S.

Sandoz, P.

Savchuk, A. G.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Sayah, A.

Seki, N.

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust. 2, 105–112 (1978).

Sibbett, W.

K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17, 2375–2384 (2009).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Sick, B.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Smilgevicius, V.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Soifer, V. A.

Stafeev, S. S.

Stehrer, T.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Stockle, R.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Suarez, M. A.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2000).

Taguchi, K.

Tan, K. M.

Tellefsen, J.

Turner, D. R.

D. R. Turner, “Etch procedure for optical fibers,” U.S. patent4,469,554 (4September1984).

Vitrik, O. B.

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe,” Opt. Lett. 38, 1452–1454 (2013).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Wang, S.

Watanabe, T.

Wild, U. P.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Wilson, T.

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust. 2, 105–112 (1978).

Wulle, T.

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef]

Wysocki, G.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Yakunin, S.

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48, 6172–6177 (2009).
[CrossRef]

Yamamoto, K.

Yamamoto, S.

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

Yu, Y. J.

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

Zenobi, R.

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Adv. At., Mol., Opt. Phys. (1)

N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Adv. At., Mol., Opt. Phys. 48, 99–151 (2002).

Appl. Opt. (3)

Appl. Phys. A (2)

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221–230 (2009).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

Appl. Phys. Lett. (1)

R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Electron. Lett. (1)

H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425–426 (1981).
[CrossRef]

IEEE J. Microw. Opt. Acoust. (1)

C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEEE J. Microw. Opt. Acoust. 2, 105–112 (1978).

J. Opt. Soc. Am. (1)

J. Phys. B (1)

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197–L1199 (2001).
[CrossRef]

Microelectron. Eng. (1)

S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006).
[CrossRef]

Nature (London) (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Opt. Commun. (2)

Y. J. Yu, H. Noh, M. H. Hong, H. R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: dependence of tip apex angle,” Opt. Commun. 267, 264–270 (2006).
[CrossRef]

Yu. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Ionin, S. V. Makarov, and S. I. Kudryashov, “Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100  nm resolution,” Opt. Commun. 308, 125–129 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef]

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef]

Proc. SPIE (1)

J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

S.-K. Eah and W. Jhe, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74, 4969–4971 (2003).
[CrossRef]

Other (6)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006).

M. Ohtsu, Progress in Nano-Electro Optics III/Industrial Applications and Dynamics of the Nano-Optical System (Springer, 2005).

www.thorlabs.com .

D. R. Turner, “Etch procedure for optical fibers,” U.S. patent4,469,554 (4September1984).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 2000).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) A SEM image of the endface of the optical fiber (Thorlabs S630-HP) after its chemical etching for 10 min in 40% aqueous solution of HF. This process allows one to determine the diameter Dtip of the chemically homogeneous section of the cladding. (b)–(d) Schematic view of the fabrication process of the high-quality microaxicon on the endface of the optical fiber and SEM images illustrating corresponding stages of the fabrication process. (e)–(g) SEM images of the microaxicons with the cone angles θ=90°, 120°, and 150° fabricated on the endface of the optical fiber Thorlabs SM300. (The length of the scale bar corresponds to 500 nm.) (h) and (i) SEM images of the microaxicons fabricated on the endface of the optical fiber (Thorlabs SM300) using chemical etching process in the HF+NH4F+H2O solution with the volume ratio of the NH4FX=0.3, 0.6, 0.8, and 1, respectively. (The volume ratios of the HF and H2O are constant and equal to 1 and 4, respectively. The etching time in each case is about 2 hours.)

Fig. 2.
Fig. 2.

Focusing properties of the FMAs with cone angles θ=85°, 90°, 120°, and 150°. (a), (c), (e), and (g) Calculated longitudinal (xz) power distributions of the laser radiation for the output of FMAs. (b), (d), (f), and (h) Longitudinal power distributions calculated (solid curves) and the experimentally measured (dotted curve) along the optical axis of the FMAs. (i), (k), (m), and (o) Transverse (xz) power distributions (λ=632.8nm) at the FMA focal plane experimentally measured using an apertured SNOM probe. (The sizes of the images are 5μm×5μm.) (j), (l), (n), and (p) Transverse power profiles calculated (solid curves) and the experimentally measured (dotted curve) at the FMAs focal plane.

Fig. 3.
Fig. 3.

Normalized FWHM, DOF, and Fz as functions of FMA cone angle θ: numerical simulations (solid curves) and experimental measurements (marked with dots).

Fig. 4.
Fig. 4.

Focusing characteristics of FMAs with the hemispherical tip. (a) Normalized FWHM, DOF, and Fz as functions of the curvature radius R of the hemispherical tip: experiment (marked with dots) and numerical simulations (solid curves). (b)–(d) Longitudinal power distribution of the laser radiation near the FMA hemispherical tip calculated at R=0.5λ, λ, and 2λ, respectively. (e) and (f) Transverse power distribution of the laser radiation (λ=355nm) experimentally measured point-by-point by an apertured SNOM probe at the focal plane of the hemispherical FMA (R=2λ) and at the distanceλ from its tip, respectively. (The sizes of the images are 3μm×3μm.)

Fig. 5.
Fig. 5.

Schematic of the experimental setup used to study the focusing properties of fabricated FMAs. Inset I shows the detection scheme of the output power distribution by the SNOM probe. Inset II shows the SEM image of the tip of the SNOM probe with the diameter of its output aperture 50nm.

Metrics