Abstract

When laser light illuminates a rough surface it is scattered into a speckle pattern that is strongly dependent on the surface geometry. Here, we show that it is possible to sense surface vibrations by measuring signal variations from a single pixel detector that collects a small portion of the scattered light. By carefully tuning the probing laser beam size and the detector’s aperture it was possible to record a good quality signal in the acoustic band. This approach eliminates the need for an interferometer and thus opens the door to the possibility of detecting vibrations at distances of few hundreds of meters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Joenathan, B. Franze, P. Haible, and H. J. Tiziani, “Speckle interferometry with temporal phase evaluation for measuring large-object deformation,” Appl. Opt. 37, 2608–2614 (1998).
    [CrossRef]
  2. J. M. Huntley, G. H. Kaufmann, and D. Kerr, “Phase-shifted dynamic speckle pattern interferometry at 1 kHz,” Appl. Opt. 38, 6556–6563 (1999).
    [CrossRef]
  3. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456–3462 (2006).
    [CrossRef]
  4. I. Yamaguchi, A. Yamamoto, and S. Kuwamura, “Speckle decorrelation in surface profilometry by wavelength scanning interferometry,” Appl. Opt. 37, 6721–6728 (1998).
    [CrossRef]
  5. G. Smeets, “Laser interference microphone for ultrasonics and nonlinear acoustics,” J. Acoust. Soc. Am. 61, 872–875 (1977).
    [CrossRef]
  6. G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
    [CrossRef]
  7. T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of head/disk spacing modulation using a two channel fiber optic laser doppler vibrometer,” IEEE Trans. Magn. 24, 2745–2747 (1988).
    [CrossRef]
  8. S. J. Rothberg, “Numerical simulation of speckle noise in laser vibrometry,” Appl. Opt. 45, 4523–4533 (2006).
    [CrossRef]
  9. P. Martin and S. J. Rothberg, “Pseudo-vibration sensitivities for commercial laser vibrometers,” Mech. Syst. Signal Process. 25, 2753–2765 (2011).
    [CrossRef]
  10. J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
    [CrossRef]
  11. I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–949 (1986).
    [CrossRef]
  12. B. Rose, H. Imam, and S. G. Hanson, “Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement,” J. Opt. 29, 115–120 (1998).
    [CrossRef]
  13. N. A. Korneev and S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
    [CrossRef]
  14. N. Korneev and S. Stepanov, “Measurement of different components of vibrations in speckle referenceless configuration using adaptive photodetectors,” Opt. Commun. 115, 35–39 (1995).
    [CrossRef]
  15. P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
    [CrossRef]
  16. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2010).
  17. S. F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Signal Process. 27, 113–119 (1979).

2011 (1)

P. Martin and S. J. Rothberg, “Pseudo-vibration sensitivities for commercial laser vibrometers,” Mech. Syst. Signal Process. 25, 2753–2765 (2011).
[CrossRef]

2006 (2)

2003 (1)

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

1999 (1)

1998 (3)

1997 (1)

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
[CrossRef]

1995 (1)

N. Korneev and S. Stepanov, “Measurement of different components of vibrations in speckle referenceless configuration using adaptive photodetectors,” Opt. Commun. 115, 35–39 (1995).
[CrossRef]

1991 (1)

N. A. Korneev and S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

1988 (1)

T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of head/disk spacing modulation using a two channel fiber optic laser doppler vibrometer,” IEEE Trans. Magn. 24, 2745–2747 (1988).
[CrossRef]

1986 (1)

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–949 (1986).
[CrossRef]

1979 (1)

S. F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Signal Process. 27, 113–119 (1979).

1978 (1)

1977 (1)

G. Smeets, “Laser interference microphone for ultrasonics and nonlinear acoustics,” J. Acoust. Soc. Am. 61, 872–875 (1977).
[CrossRef]

Boll, S. F.

S. F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Signal Process. 27, 113–119 (1979).

Carson, P. L.

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
[CrossRef]

Chen, J.

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
[CrossRef]

Elliott, G.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Feke, G. T.

Fowlkes, J. B.

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
[CrossRef]

Franze, B.

Goding, A. C.

T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of head/disk spacing modulation using a two channel fiber optic laser doppler vibrometer,” IEEE Trans. Magn. 24, 2745–2747 (1988).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2010).

Gusev, M. E.

Haible, P.

Hanson, S. G.

B. Rose, H. Imam, and S. G. Hanson, “Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement,” J. Opt. 29, 115–120 (1998).
[CrossRef]

Huntley, J. M.

Imam, H.

B. Rose, H. Imam, and S. G. Hanson, “Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement,” J. Opt. 29, 115–120 (1998).
[CrossRef]

Jin, F.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Joenathan, C.

Kaufmann, G. H.

Kerr, D.

Khurgin, J.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Korneev, N.

N. Korneev and S. Stepanov, “Measurement of different components of vibrations in speckle referenceless configuration using adaptive photodetectors,” Opt. Commun. 115, 35–39 (1995).
[CrossRef]

Korneev, N. A.

N. A. Korneev and S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

Kuwamura, S.

Lee, J.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Martin, P.

P. Martin and S. J. Rothberg, “Pseudo-vibration sensitivities for commercial laser vibrometers,” Mech. Syst. Signal Process. 25, 2753–2765 (2011).
[CrossRef]

Meyers, J. F.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Osten, W.

Pedrini, G.

Riener, T. A.

T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of head/disk spacing modulation using a two channel fiber optic laser doppler vibrometer,” IEEE Trans. Magn. 24, 2745–2747 (1988).
[CrossRef]

Riva, C. E.

Rodriguez, P.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Rose, B.

B. Rose, H. Imam, and S. G. Hanson, “Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement,” J. Opt. 29, 115–120 (1998).
[CrossRef]

Rothberg, S. J.

P. Martin and S. J. Rothberg, “Pseudo-vibration sensitivities for commercial laser vibrometers,” Mech. Syst. Signal Process. 25, 2753–2765 (2011).
[CrossRef]

S. J. Rothberg, “Numerical simulation of speckle noise in laser vibrometry,” Appl. Opt. 45, 4523–4533 (2006).
[CrossRef]

Rubin, J. M.

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
[CrossRef]

Smeets, G.

G. Smeets, “Laser interference microphone for ultrasonics and nonlinear acoustics,” J. Acoust. Soc. Am. 61, 872–875 (1977).
[CrossRef]

Stepanov, S.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

N. Korneev and S. Stepanov, “Measurement of different components of vibrations in speckle referenceless configuration using adaptive photodetectors,” Opt. Commun. 115, 35–39 (1995).
[CrossRef]

Stepanov, S. I.

N. A. Korneev and S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

Talke, F. E.

T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of head/disk spacing modulation using a two channel fiber optic laser doppler vibrometer,” IEEE Trans. Magn. 24, 2745–2747 (1988).
[CrossRef]

Tiziani, H. J.

Trivedi, S.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Wang, C.

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, A. Yamamoto, and S. Kuwamura, “Speckle decorrelation in surface profilometry by wavelength scanning interferometry,” Appl. Opt. 37, 6721–6728 (1998).
[CrossRef]

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–949 (1986).
[CrossRef]

Yamamoto, A.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

P. Rodriguez, S. Trivedi, F. Jin, C. Wang, S. Stepanov, G. Elliott, J. F. Meyers, J. Lee, and J. Khurgin, “Pulsed-laser vibrometer using photoelectromotive-force sensors,” Appl. Phys. Lett. 83, 1893–1895 (2003).
[CrossRef]

IEEE Trans. Acoust., Speech, Signal Process. (1)

S. F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Signal Process. 27, 113–119 (1979).

IEEE Trans. Magn. (1)

T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of head/disk spacing modulation using a two channel fiber optic laser doppler vibrometer,” IEEE Trans. Magn. 24, 2745–2747 (1988).
[CrossRef]

Int. J. Imaging Syst. Technol. (1)

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, “Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test,” Int. J. Imaging Syst. Technol. 8, 38–44 (1997).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. Smeets, “Laser interference microphone for ultrasonics and nonlinear acoustics,” J. Acoust. Soc. Am. 61, 872–875 (1977).
[CrossRef]

J. Mod. Opt. (1)

N. A. Korneev and S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

J. Opt. (1)

B. Rose, H. Imam, and S. G. Hanson, “Non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement,” J. Opt. 29, 115–120 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. E (1)

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E 19, 944–949 (1986).
[CrossRef]

Mech. Syst. Signal Process. (1)

P. Martin and S. J. Rothberg, “Pseudo-vibration sensitivities for commercial laser vibrometers,” Mech. Syst. Signal Process. 25, 2753–2765 (2011).
[CrossRef]

Opt. Commun. (1)

N. Korneev and S. Stepanov, “Measurement of different components of vibrations in speckle referenceless configuration using adaptive photodetectors,” Opt. Commun. 115, 35–39 (1995).
[CrossRef]

Other (1)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2010).

Supplementary Material (1)

» Media 1: WAV (47 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. A laser beam strikes a vibrating membrane, and the scattered light forms a speckle pattern collected by a detector (camera or photodiode). W, laser spot size on the target membrane; L, detector–target distance; D, detector aperture; θ, local tilt of the membrane surface.

Fig. 2.
Fig. 2.

(a) Amplitude of the terms in Eq. (1) plotted as a function of D: P0 (green), P1 (blue), P2 (red), P3 (purple), and ξ (black). Green and black lines plot D2 and D3/2, respectively, while blue lines highlight the behavior of P1 in the two regimes shown in Eq. (2). Power spectrum of P(t) for D equal to (b) 700 μm and (c) 7 μm are shown in logarithmic scale. (d) Signal-to-noise ratio as a function of D calculated as the squared ratio between P1 and ξ. (e) Amplitudes of the first three harmonics and of ξ as a function of a. Power spectrum of P(t) for (f) the lowest and (g) the highest value of vibration amplitude. (h) Standard deviation of P1, P2, and P3 divided their average values as a function of D. Blue, red, and purple arrows in (b), (c), (f), and (g) indicate the peaks corresponding to first, second, and third harmonic, respectively. Notice that, due to the limited acquisition frame rate, the harmonics above the second are aliased.

Fig. 3.
Fig. 3.

(a) Power spectrum of a sinusoidal vibration of the membrane. (b) Output signal of the detector when target membrane vibration is caused by the experimenter’s voice (Media 1). Both measures were performed at a distance of 5 m and with a 1 mm detector aperture.

Fig. 4.
Fig. 4.

(a) Power spectrum of P when the target position is fixed and when it is translating at a velocity of about (b) 2cm/s and (c) 4cm/s. The vibration peak at 100 Hz is broadened as the target speed increases. Such an effect can be overcome by tracking the speckle displacement whose power spectra are shown in (d) for a fixed target and in (e) and (f) for a target moving at about 2 and 4cm/s.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P(a(t))P0+P1a(t)+12P2a(t)2++ξ(t),
Pn212D2WnL2λnforDλL/W,DWn1Lλn1forDλL/W,
c(r,t)=I(r,t)I(r+r,t+Δt)dr,
u(r)=1Lexp(i2πr·rLλ+iϕ(r))dr,
nIxn=K12·x^2kmaxL2eiK12·r+iΦ12dk1dk2,
K12=k1k2,Φ12=ϕ(k1)ϕ(k2),kmax=πW/(Lλ),
(nIxn)212=(K12·x^)(K34·x^)4kmax2L4ei(K12+K34)·r+iΦ12iΦ34d4k12.
eiΦ12iΦ34=δ(K12)δ(K34)+δ(K14)δ(K23).
(nIxn)212kmaxnL2=WnλnLn+2.
P=I(x+θL,y)dxdy==n=0θnLnnIxndxdy.
(nPθn)212D2WnL2λn.
(nPθn)212LnL2λ2W2i=0Nj=0NnIixnnIjxn12DWn1λn1L.

Metrics