Abstract

We report the sol-gel synthesis and characterization of far-red garnet phosphors Gd3Ga5O12 (GGG:Cr), Y3Ga5O12 (YGG:Cr), Lu3Ga5O12 (LGG:Cr), and Gd3Sc2Ga3O12 (GSGG:Cr) doped with different chromium (III) concentration (3, 5, and 8 mol. %). The morphological and luminescence properties of the phosphors annealed at different temperatures (1000°C, 1300°C, 1400°C, and 1500°C) were examined using x-ray diffraction, scanning electron microscopy, photoluminescence (PL), and PL excitation (PLE) spectroscopy, and by the measurements of diffuse reflection, PL internal quantum efficiency (QE), and PL decay time. The PLE spectra of the samples were found to peak at around 450 nm depending on the host, and luminescence was observed in the region of 700–760 nm. The QE was found to strongly depend on doping concentration and calcination temperature, and the PL decay exhibited biexponential behavior. The investigated far-red garnet phosphors, in particular GGG:Cr and YGG:Cr, show a potential for use in phosphor-converted light-emitting diodes that meet the photomorphogenetic needs of plants.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yeh and J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175–2180 (2009).
  2. M. S. McDonald, Photobiology of Higher Plants (Wiley, 2003).
  3. S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
    [CrossRef]
  4. R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).
  5. R. C. Jao and W. Fang, “An adjustable light source for photo–phyto related research and young plant production,” Appl. Eng. Agric. 19, 601–608 (2003).
  6. G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
    [CrossRef]
  7. C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).
  8. N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).
  9. G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
    [CrossRef]
  10. O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
    [CrossRef]
  11. H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009).
    [CrossRef]
  12. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011).
    [CrossRef]
  13. W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, 2004).
  14. L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
    [CrossRef]
  15. A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011).
    [CrossRef]
  16. M. D. Seltzer, “Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe-Sugano diagrams,” J. Chem. Educ. 72, 886–888 (1995).
    [CrossRef]
  17. B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Appl. Phys. B 36, 195–201 (1985).
    [CrossRef]
  18. L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
    [CrossRef]
  19. W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
    [CrossRef]
  20. M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
    [CrossRef]
  21. D. L. Wood and K. Nassau, “Optical properties of gadolinium gallium garnet,” Appl. Opt. 29, 3704–3707 (1990).
    [CrossRef]
  22. B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
    [CrossRef]
  23. H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
    [CrossRef]
  24. A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
    [CrossRef]
  25. C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27, 69–88 (1997).
    [CrossRef]
  26. W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
    [CrossRef]
  27. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
    [CrossRef]
  28. A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
    [CrossRef]
  29. J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
    [CrossRef]
  30. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  31. G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993).
    [CrossRef]
  32. K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31–32, 71–77 (1984).
    [CrossRef]
  33. A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
    [CrossRef]
  34. A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
    [CrossRef]
  35. S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
    [CrossRef]

2011

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011).
[CrossRef]

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011).
[CrossRef]

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

2010

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

2009

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
[CrossRef]

H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009).
[CrossRef]

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

N. Yeh and J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175–2180 (2009).

2008

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

2007

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

2005

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

2004

S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
[CrossRef]

2003

R. C. Jao and W. Fang, “An adjustable light source for photo–phyto related research and young plant production,” Appl. Eng. Agric. 19, 601–608 (2003).

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

2001

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

1997

G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
[CrossRef]

C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27, 69–88 (1997).
[CrossRef]

J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

1995

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).

M. D. Seltzer, “Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe-Sugano diagrams,” J. Chem. Educ. 72, 886–888 (1995).
[CrossRef]

1993

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993).
[CrossRef]

W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
[CrossRef]

1991

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

1990

A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
[CrossRef]

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

D. L. Wood and K. Nassau, “Optical properties of gadolinium gallium garnet,” Appl. Opt. 29, 3704–3707 (1990).
[CrossRef]

1988

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

1985

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Appl. Phys. B 36, 195–201 (1985).
[CrossRef]

1984

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31–32, 71–77 (1984).
[CrossRef]

1983

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Barta, D. J.

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

Bettentrup, H.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

Bettinelli, M.

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011).
[CrossRef]

Bingham, G. E.

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

Blasse, G.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993).
[CrossRef]

Bliznikas, Z.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Bödinger, H.

W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
[CrossRef]

Boulon, G.

A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
[CrossRef]

Brazaityte, A.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Breive, K.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Brown, C. S.

G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
[CrossRef]

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).

Bula, R. J.

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

Chung, J.-P.

N. Yeh and J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175–2180 (2009).

Collins, J.

H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
[CrossRef]

de Mello, J. C.

J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Di Bartolo, B.

H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
[CrossRef]

Ding, L.

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Donnelly, C. J.

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

Duchovskis, P.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Duclos, S.

C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27, 69–88 (1997).
[CrossRef]

Fang, W.

R. C. Jao and W. Fang, “An adjustable light source for photo–phyto related research and young plant production,” Appl. Eng. Agric. 19, 601–608 (2003).

Friend, R.

J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Glynn, T. J.

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

Goins, G. D.

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
[CrossRef]

Grabmaier, B. C.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993).
[CrossRef]

W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
[CrossRef]

Greskovich, C.

C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27, 69–88 (1997).
[CrossRef]

Hahn, E.-J.

S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
[CrossRef]

Healy, S. M.

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

Henderson, B.

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

Heo, J.-W.

S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
[CrossRef]

Huber, G.

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Appl. Phys. B 36, 195–201 (1985).
[CrossRef]

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31–32, 71–77 (1984).
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Ignatius, R. W.

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

Imbusch, G. F.

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

Jao, R. C.

R. C. Jao and W. Fang, “An adjustable light source for photo–phyto related research and young plant production,” Appl. Eng. Agric. 19, 601–608 (2003).

Jørgensen, J.-E.

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

Jurkevicius, J.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

Jüstel, T.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

Kagie, H. R.

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

Kajii, H.

H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009).
[CrossRef]

Kareiva, A.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

Katelnikovas, A.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

Kazlauskas, K.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

Kim, S.-J.

S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
[CrossRef]

Kimpara, K.

H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009).
[CrossRef]

Kostyk, L.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

Kuklinski, B.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Laptev, V. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Leppert, J.

W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
[CrossRef]

Liu, W.

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Lu, Q.-F.

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

Luchechko, A.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

Ma, L.

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

Madej, C.

A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
[CrossRef]

Mao, Z.-Y.

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

Marshall, A.

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

Martin, T. S.

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

McDonald, M. S.

M. S. McDonald, Photobiology of Higher Plants (Wiley, 2003).

Miyazaki, Y.

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

Monje, O.

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

Monteil, A.

A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
[CrossRef]

Morgan, G. P.

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

Morrow, R. C.

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

Nassau, K.

Nie, W.

A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
[CrossRef]

Novickovas, A.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

O’Donnell, K. P.

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

Ohmori, Y.

H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009).
[CrossRef]

Orucu, H.

H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
[CrossRef]

Ostertag, M.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993).
[CrossRef]

Ozen, G.

H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
[CrossRef]

Paek, K.-Y.

S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
[CrossRef]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011).
[CrossRef]

Petermann, K.

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31–32, 71–77 (1984).
[CrossRef]

Piccinelli, F.

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011).
[CrossRef]

Pobedinskas, P.

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

Poelman, D.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011).
[CrossRef]

Porterfield, D. M.

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

Rossner, W.

W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
[CrossRef]

Sager, J. C.

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).

Sakirzanovas, S.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

Sanwo, M. M.

G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
[CrossRef]

Scherbakov, I. A.

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Schuerger, A. C.

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).

Seltzer, M. D.

M. D. Seltzer, “Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe-Sugano diagrams,” J. Chem. Educ. 72, 886–888 (1995).
[CrossRef]

Smet, P. F.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011).
[CrossRef]

Speghini, A.

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011).
[CrossRef]

Struve, B.

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Appl. Phys. B 36, 195–201 (1985).
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Stutte, G. W.

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

Sun, D.

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Tamulaitis, G.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Tibbitts, T. W.

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

Tsvetkova, O.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

Uhlich, D.

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

Ulinskaite, R.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Vitta, P.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

Wang, D.-J.

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

Weber, M. J.

W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, 2004).

Wheeler, R. M.

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

Wittmann, H. F.

J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Wood, D. L.

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

Xiao, J.

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Yamaga, M.

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

Yeh, N.

N. Yeh and J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175–2180 (2009).

Yen, W. M.

W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, 2004).

Yin, S.

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Yorio, N. C.

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
[CrossRef]

Yuan, Z.-H.

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

Zakharko, Ya.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

Zhang, Q.

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

Zharikov, E. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Žukauskas, A.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Adv. Mater.

J. C. de Mello, H. F. Wittmann, and R. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230–232 (1997).
[CrossRef]

Adv. Space Res.

O. Monje, G. W. Stutte, G. D. Goins, D. M. Porterfield, and G. E. Bingham, “Farming in space: environmental and biophysical concerns,” Adv. Space Res. 31, 151–167 (2003).
[CrossRef]

Annu. Rev. Mater. Sci.

C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27, 69–88 (1997).
[CrossRef]

Appl. Eng. Agric.

R. C. Jao and W. Fang, “An adjustable light source for photo–phyto related research and young plant production,” Appl. Eng. Agric. 19, 601–608 (2003).

Appl. Opt.

Appl. Phys. B

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals,” Appl. Phys. B 36, 195–201 (1985).
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Scherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Appl. Phys. Lett.

L. Ma, D.-J. Wang, Z.-Y. Mao, Q.-F. Lu, and Z.-H. Yuan, “Investigation of Eu–Mn energy transfer in A 3MgSi2O8: Eu2+, Mn2+ (A = Ca, Sr, Ba) for light-emitting diodes for plant cultivation,” Appl. Phys. Lett. 93, 144101 (2008).
[CrossRef]

Hortscience

N. C. Yorio, G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager, “Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation,” Hortscience 36, 380–383 (2001).

R. J. Bula, R. C. Morrow, T. W. Tibbitts, D. J. Barta, R. W. Ignatius, and T. S. Martin, “Light-emitting diodes as a radiation source for plants,” Hortscience 26, 203–205 (1991).

IEEE Trans. Nucl. Sci.

W. Rossner, H. Bödinger, J. Leppert, and B. C. Grabmaier, “The conversion of high energy radiation to visible light by luminescent ceramics,” IEEE Trans. Nucl. Sci. 40, 376–379 (1993).
[CrossRef]

J. Alloys Compd.

A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Jüstel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, “Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes,” J. Alloys Compd. 509, 6247–6251 (2011).
[CrossRef]

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloys Compd. 200, 17–18 (1993).
[CrossRef]

J. Am. Soc. Hortic. Sci.

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120, 808–813 (1995).

J. Chem. Educ.

M. D. Seltzer, “Interpretation of the emission spectra of trivalent chromium-doped garnet crystals using Tanabe-Sugano diagrams,” J. Chem. Educ. 72, 886–888 (1995).
[CrossRef]

J. Cryst. Growth

A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.-E. Jørgensen, and A. Kareiva, “Photoluminescence in sol–gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304, 361–368 (2007).
[CrossRef]

J. Electrochem. Soc.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158, R37–R54 (2011).
[CrossRef]

J. Exp. Bot.

G. D. Goins, N. C. Yorio, M. M. Sanwo, and C. S. Brown, “Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting,” J. Exp. Bot. 48, 1407–1413 (1997).
[CrossRef]

J. Lumin.

S. M. Healy, C. J. Donnelly, T. J. Glynn, G. F. Imbusch, and G. P. Morgan, “Temperature dependence of the luminescence of GSGG: Cr3+,” J. Lumin. 46, 1–7 (1990).
[CrossRef]

K. Petermann and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31–32, 71–77 (1984).
[CrossRef]

M. Yamaga, A. Marshall, K. P. O’Donnell, B. Henderson, and Y. Miyazaki, “Photoluminescence of Cr3+ ions in RF-sputtered YGG thin films,” J. Lumin. 39, 335–341 (1988).
[CrossRef]

A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumin. 129, 1356–1361 (2009).
[CrossRef]

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129, 312–316 (2009).
[CrossRef]

J. Phys. D: Appl. Phys.

G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breivė, R. Ulinskaitė, A. Brazaitytė, A. Novičkovas, and A. Žukauskas, “High-power light-emitting diode based facility for plant cultivation,” J. Phys. D: Appl. Phys. 38, 3182–3187 (2005).
[CrossRef]

Mater. Sci. Eng. R

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. R 71, 1–34 (2010).
[CrossRef]

Opt. Mater.

H. Orucu, G. Ozen, J. Collins, and B. Di Bartolo, “Temperature dependence of the luminescence spectra of garnet crystals doped with chromium ions,” Opt. Mater. 31, 1065–1070 (2009).
[CrossRef]

A. Speghini, F. Piccinelli, and M. Bettinelli, “Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family,” Opt. Mater. 33, 247–257 (2011).
[CrossRef]

Opt. Quantum Electron.

A. Monteil, W. Nie, C. Madej, and G. Boulon, “Multisites Cr3+ in GGG and GSGG garnets,” Opt. Quantum Electron. 22, S247–S257 (1990).
[CrossRef]

Physica B

W. Liu, Q. Zhang, L. Ding, D. Sun, J. Xiao, and S. Yin, “Preparation and luminescence properties of nano-polycrystalline Cr3+:Lu3Ga5O12,” Physica B 403, 3403–3405 (2008).
[CrossRef]

Renew. Sust. Energ. Rev.

N. Yeh and J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation,” Renew. Sust. Energ. Rev. 13, 2175–2180 (2009).

Sci. Hortic.

S.-J. Kim, E.-J. Hahn, J.-W. Heo, and K.-Y. Paek, “Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro,” Sci. Hortic. 101, 143–151 (2004).
[CrossRef]

Thin Solid Films

H. Kajii, K. Kimpara, and Y. Ohmori, “Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process,” Thin Solid Films 518, 551–554 (2009).
[CrossRef]

Other

W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, 2004).

M. S. McDonald, Photobiology of Higher Plants (Wiley, 2003).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

SEM image of GGG:Cr 5 mol. % annealed at 1000°C.

Fig. 2.
Fig. 2.

SEM image of GGG:Cr 5 mol. % annealed at 1400°C.

Fig. 3.
Fig. 3.

PLE spectra of pure GGG annealed at 1000°C and GGG with 5 mol. % Cr3+ annealed at 1000°C and 1300°C. PL was monitored at 720 nm.

Fig. 4.
Fig. 4.

Diffuse reflection spectra of GGG 5 mol. % Cr3+, GSGG 8 mol. % Cr3+, LGG 3 mol. % Cr3+, and YGG 8 mol. % Cr3+ annealed at 1400°C.

Fig. 5.
Fig. 5.

PL spectra of different samples annealed at 1000°C upon 450 nm excitation.

Fig. 6.
Fig. 6.

PL spectra of GGG:Cr 5 mol. % for different annealing temperatures upon 450 nm excitation.

Fig. 7.
Fig. 7.

PL spectra of GGG:Cr measured in the integrating sphere upon 445 nm excitation.

Fig. 8.
Fig. 8.

Frequency dependence of the PL modulation depth and phase shift of GGG:Cr 5 mol. % annealed at 1500°C.

Fig. 9.
Fig. 9.

PL spectra of samples annealed at 1400°C for ambient temperatures of 0°C, 20°C, 40°C, 60°C, and 80°C upon 445 nm excitation.

Fig. 10.
Fig. 10.

Dependence of spectrally integrated PL intensity on ambient temperature for samples annealed at 1400°C.

Tables (2)

Tables Icon

Table 1. Optimization of Gallium Garnets Annealed at 1000°C, Doped with Different Cr3+ Concentrations

Tables Icon

Table 2. Optical Properties of Gallium Garnets Doped with Optimal Cr3+ Concentrations and Annealed at Different Temperatures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)=fexp(t/τ1)+(1f)exp(t/τ2).

Metrics