Abstract

We demonstrate the self-mode-locking operation of a thulium (Tm)-doped fiber laser (TDFL) with a simple linear cavity. Since the laser cavity does not include any specific mode-locker, we experimentally investigate and analyze the self-mode-locking mechanism. The mode-locking operation is attributed to the combination of the self-phase modulation effect and the weak saturable absorption of the high-concentration Tm-doped fiber. The mode-locked TDFL operates at a central wavelength of 1985.5 nm with the 3 dB spectral linewidth of 0.18 nm. The self-mode-locking generates a large pulse energy of 32.7 nJ with a pulsed repetition rate of 2.05 MHz and is stable with a radio-frequency signal-to-noise ratio of more than 54 dB. To the best of our knowledge, it is the first demonstration of a 2 μm Tm-doped fiber laser mode-locked by such technique.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Fried and K. E. Murray, “New technologies in endourology high-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
    [CrossRef]
  2. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
    [CrossRef]
  3. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [CrossRef]
  4. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
    [CrossRef]
  5. R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
    [CrossRef]
  6. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).
  7. F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15, 1479–1493 (1976).
    [CrossRef]
  8. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6  μm,” Opt. Express 14, 6084–6090 (2006).
    [CrossRef]
  9. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989–1991 (2002).
    [CrossRef]
  10. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
    [CrossRef]
  11. P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, “High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser,” Opt. Lett. 36, 2483–2485 (2011).
    [CrossRef]
  12. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36, 3750–3752 (2011).
    [CrossRef]
  13. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
    [CrossRef]
  14. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93  μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33, 1336–1338 (2008).
    [CrossRef]
  15. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
    [CrossRef]
  16. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
    [CrossRef]
  17. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
    [CrossRef]
  18. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  19. J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
    [CrossRef]
  20. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004).
    [CrossRef]
  21. H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
    [CrossRef]
  22. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
    [CrossRef]
  23. H. Zhang, D. Y. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19, 3525–3530 (2011).
    [CrossRef]
  24. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
    [CrossRef]
  25. Z. Q. Luo, C. C. Ye, H. Y. Fu, H. H. Cheng, J. Z. Wang, and Z. P. Cai, “Raman fiber laser harmonically mode-locked by exploiting the intermodal beating of CW multimode pump source,” Opt. Express 20, 19905–19911 (2012).
    [CrossRef]
  26. Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L (2009).
  27. F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
    [CrossRef]
  28. F. Sanchez and A. Kellou, “Laser dynamics with excited-state absorption,” J. Opt. Soc. Am. B 14, 209–213 (1997).
    [CrossRef]
  29. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
    [CrossRef]
  30. X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
    [CrossRef]
  31. Y. H. Lin, J. Y. Lo, W. H. Tseng, C. I. Wu, and G. R. Lin, “Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers,” Opt. Express 21, 25184 (2013).
    [CrossRef]
  32. J. Swiderski and M. Michalska, “Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser,” Opt. Lett. 38, 1624–1626 (2013).
    [CrossRef]

2013 (4)

2012 (5)

2011 (3)

2010 (2)

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

2009 (5)

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L (2009).

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

2008 (1)

2006 (1)

2005 (3)

N. M. Fried and K. E. Murray, “New technologies in endourology high-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

2004 (1)

2002 (1)

1997 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1993 (1)

1991 (1)

1976 (1)

Abramski, K. M.

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Arutyunyan, N. R.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Barnes, N. P.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Cai, Z. P.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Chen, B.

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Chen, J.

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Chen, K. P.

Chen, T.

Cheng, H. H.

Chernov, A. I.

Chernysheva, M. A.

Chrostowski, J.

Clarkson, W. A.

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Debnath, P.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Dianov, E. M.

Ebrahim-Zadeh, M.

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).

Eichhorn, M.

Feng, X.

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Fermann, M. E.

Ferrari, A. C.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Fried, N. M.

N. M. Fried and K. E. Murray, “New technologies in endourology high-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[CrossRef]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Fu, H. Y.

Gebhardt, F. G.

Götschl, R.

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Haberl, F.

Hanna, D. C.

Hasan, T.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Heberle, A. P.

Hofer, M.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Hübner, P.

Inoue, Y.

Jablonski, M.

Jackson, S. D.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Jung, M.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kelleher, E. J. R.

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kellou, A.

Kieleck, C.

King, T. A.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

Koningstein, J. A. K.

Konov, V. I.

Koo, J.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Krajewska, A.

Krylov, A. A.

Kryukov, P. G.

Lee, J. H.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Liang, L.

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Lin, G. R.

Lin, Y. H.

Lin, Z.

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Liu, J.

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[CrossRef]

Lo, J. Y.

Lobach, A. S.

Loh, K.

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Luo, Z. Q.

Maruyama, S.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Maze, G.

Michalska, M.

Miller, R. J. D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Murakami, Y.

Murray, K. E.

N. M. Fried and K. E. Murray, “New technologies in endourology high-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[CrossRef]

Myslinski, P.

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Nilsson, J.

Ober, M. H.

Obraztsova, E. D.

Paras, L.

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

Pasternak, I.

Popa, D.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Popov, S. V.

Pozharov, A. S.

Qamar, F. Z.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

Razmaria, A.

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Sahu, J. K.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Sanchez, F.

Schmeller, N. T.

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

Schmidt, A. J.

Set, S. Y.

Shen, D. Y.

Simpson, J. R.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Sobon, G.

Solodyankin, M. A.

Song, Y. W.

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Sorokina, I. T.

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).

Sotor, J.

Strupinski, W.

Sun, Z.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Swiderski, J.

Szlauer, R.

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

Tang, D. Y.

H. Zhang, D. Y. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19, 3525–3530 (2011).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Tang, Y.

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L (2009).

Tausenev, A. V.

Taylor, J. R.

Torrisi, F.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Tseng, W. H.

Turner, P. W.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

Wang, F.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

Wang, J. Z.

Wang, L.

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Wang, P.

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[CrossRef]

Wang, Q.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Wu, C. I.

Wu, X.

Xu, J.

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[CrossRef]

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L (2009).

Yaguchi, H.

Yamashita, S.

Ye, C. C.

Zhang, B.

Zhang, H.

H. Zhang, D. Y. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19, 3525–3530 (2011).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Zhang, M.

Zhao, L.

H. Zhang, D. Y. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19, 3525–3530 (2011).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Express (1)

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[CrossRef]

European Urology (1)

R. Szlauer, R. Götschl, A. Razmaria, L. Paras, and N. T. Schmeller, “Endoscopic vaporesection of the prostate using the continuous-wave 2-μm thulium laser: outcome and demonstration of the surgical technique,” European Urology 55, 368–375 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[CrossRef]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “New technologies in endourology high-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[CrossRef]

J. Mod. Opt. (1)

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009).
[CrossRef]

Opt. Express (8)

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6  μm,” Opt. Express 14, 6084–6090 (2006).
[CrossRef]

H. Zhang, D. Y. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19, 3525–3530 (2011).
[CrossRef]

Z. Q. Luo, C. C. Ye, H. Y. Fu, H. H. Cheng, J. Z. Wang, and Z. P. Cai, “Raman fiber laser harmonically mode-locked by exploiting the intermodal beating of CW multimode pump source,” Opt. Express 20, 19905–19911 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).
[CrossRef]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
[CrossRef]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[CrossRef]

Y. H. Lin, J. Y. Lo, W. H. Tseng, C. I. Wu, and G. R. Lin, “Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers,” Opt. Express 21, 25184 (2013).
[CrossRef]

Opt. Lett. (7)

J. Swiderski and M. Michalska, “Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser,” Opt. Lett. 38, 1624–1626 (2013).
[CrossRef]

P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, “High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser,” Opt. Lett. 36, 2483–2485 (2011).
[CrossRef]

Q. Wang, T. Chen, B. Zhang, A. P. Heberle, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36, 3750–3752 (2011).
[CrossRef]

M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93  μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33, 1336–1338 (2008).
[CrossRef]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
[CrossRef]

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989–1991 (2002).
[CrossRef]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004).
[CrossRef]

PLoS One (1)

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery,” PLoS One 5, e13053 (2010).
[CrossRef]

Proc. SPIE (2)

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L (2009).

X. Feng, B. Chen, J. Chen, L. Wang, L. Liang, and Z. Lin, “Study of self mode-locking in Q-switched and in all-fiber Fabry–Perot cavity ytterbium-doped fiber laser,” Proc. SPIE 5623, 88–95 (2005).
[CrossRef]

Other (1)

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the self-mode-locked Tm-doped fiber laser.

Fig. 2.
Fig. 2.

Transmission spectra of (a) the highly reflective mirror (M1) and (b) the output-coupling mirror (M2).

Fig. 3.
Fig. 3.

(a) Temporal characteristics of the TDFL without the 40 m SMF-28 fiber. (a) 1.73 W, (b) 1.92 W, (c) 2.13 W, and (d) 2.42 W.

Fig. 4.
Fig. 4.

Evolution of the laser operation states under different lengths of the SMF-28 fiber (a) 5 m, (b) 10 m, (c) 17 m, and (d) 20 m.

Fig. 5.
Fig. 5.

Output spectrum of the self-Q-switching and mode-locking TDFLs at the pump power of 2.05 W.

Fig. 6.
Fig. 6.

(a) Pulse train of the mode-locked TDFL with a pulse separation of 490 ns, (b) the single pulse of the TDFL, and (c) the RF spectrum at the fundamental frequency (the inset is the broadband RF output spectrum).

Fig. 7.
Fig. 7.

Output power and the pulse energy of the TDFL.

Metrics