Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effects of bonding layer on the available strain measuring range of fiber Bragg gratings

Not Accessible

Your library or personal account may give you access

Abstract

Stress-induced birefringence can lead to distortion in the reflection spectra of fiber Bragg grating (FBG) sensors, thereby resulting in the loss of accuracy and stability of strain measurements. The bonding layer is a direct factor in producing stress birefringence within FBGs. To assess the impacts quantitatively, a theoretical model that links the bonding layer and the reflection spectrum was established. At the same time, the finite element method, based on the theoretical model, was used to study the relationships between characteristics of the bonding layer and reflection spectrum in detail. The analytical results indicate that high elastic modulus and mismatched Poisson’s ratio of bonding layer decrease the available strain measuring range of FBGs remarkably, and that unreasonable geometric parameters of the bonding layer should be avoided. In addition, a validation experiment was conducted and experimental results proved the prediction of the theoretical analysis. It can be concluded from the results that the bonding layer is the major limiting factor for the application of surface-bonded FBG sensors in large strain measurements. The bonding materials and bonding processes used in producing FBG sensors deserve serious consideration.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings

Quan-bao Wang, Ye Qiu, Hai-tao Zhao, Ji-an Chen, Yue-ying Wang, and Zhen-min Fan
Appl. Opt. 51(18) 4129-4138 (2012)

Accurate simulations of reflective wavelength spectrum of surface-bonded fiber Bragg grating

Chih-Chun Cheng, Yu-lung Lo, and Wen-Yuan Li
Appl. Opt. 49(17) 3394-3402 (2010)

Estimations of fiber Bragg grating parameters and strain gauge factor using optical spectrum and strain distribution information

C. C. Cheng, Y. L. Lo, W. Y. Li, C. T. Kuo, and H. C. Cheng
Appl. Opt. 46(21) 4555-4562 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved