Abstract

In this theoretical study, modulation techniques are developed to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. A continuous wave (CW) lidar system using sine waves modulated by maximum length (ML) pseudo-noise (PN) codes is described for making simultaneous online/offline differential absorption measurements. Amplitude and phase-shift keying (PSK) modulated intensity modulation (IM) carriers, in addition to a hybrid-pulse technique are investigated, which exhibit optimal autocorrelation properties. A method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions, which does not significantly degrade the resolution or introduce sidelobes as a means of reducing aliasing and IM carrier bandwidth.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (The National Academies, 2007).
  2. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
    [CrossRef]
  3. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.
  4. J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011).
    [CrossRef]
  5. J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
    [CrossRef]
  6. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
    [CrossRef]
  7. O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
    [CrossRef]
  8. M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, D. Sakaizawa, S. Kawakami, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
    [CrossRef]
  9. E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.
  10. E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.
  11. J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
    [CrossRef]
  12. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
    [CrossRef]
  13. S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.
  14. M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.
  15. M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.
  16. J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.
  17. J. F. Campbell, “Nonlinear swept frequency technique for CO2 measurements using a CW laser system,” Appl. Opt. 52, 3100–3107 (2013).
    [CrossRef]
  18. B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
    [CrossRef]
  19. J. Campbell, “Synthetic quadrature phase detector/demodulator for Fourier transform spectrometers,” Appl. Opt. 47, 6889–6894 (2008).
    [CrossRef]
  20. B. J. Skinner, J. P. Donohoe, and F. M. Ingels, “Matched FSK/PSK radar,” in IEEE Proceedings of the 1994 National Radar Conference, Atlanta, Georgia, March1994.
  21. J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5, 224–226 (1993).
    [CrossRef]
  22. K. Mupota and K. Hirade, “GMSK modulation for digital mobile radio telephony,” IEEE Trans. Commun. 29, 1044–1050 (1981).
    [CrossRef]
  23. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University, 1927, reprint 1992), p. 462.
  24. J. Campbell, “The SMM model as a boundary value problem using the discrete diffusion equation,” Theor. Popul. Biol. 72, 539–546 (2007).
    [CrossRef]
  25. J. Campbell, “Ground state energy for the Hartree–Fock equations with Dirichlet boundary conditions,” Math. Phys. Appl. Math. 35, 1471–1487 (1994).
  26. C. E. Shannon, “Communication in the presence of noise (reprint),” Proc. IEEE 86, 447–457 (1988).
  27. J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3, 505–523 (1997).
    [CrossRef]

2013 (3)

2012 (1)

2011 (3)

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011).
[CrossRef]

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
[CrossRef]

2010 (1)

2008 (1)

2007 (1)

J. Campbell, “The SMM model as a boundary value problem using the discrete diffusion equation,” Theor. Popul. Biol. 72, 539–546 (2007).
[CrossRef]

2005 (1)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

2004 (1)

1997 (1)

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3, 505–523 (1997).
[CrossRef]

1994 (1)

J. Campbell, “Ground state energy for the Hartree–Fock equations with Dirichlet boundary conditions,” Math. Phys. Appl. Math. 35, 1471–1487 (1994).

1993 (1)

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5, 224–226 (1993).
[CrossRef]

1988 (1)

C. E. Shannon, “Communication in the presence of noise (reprint),” Proc. IEEE 86, 447–457 (1988).

1981 (1)

K. Mupota and K. Hirade, “GMSK modulation for digital mobile radio telephony,” IEEE Trans. Commun. 29, 1044–1050 (1981).
[CrossRef]

Abshire, J. B.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Agishev, R.

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Allan, G. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Amzajerdian, F.

Bai, Y.

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

Barnes, B. W.

Batet, O.

Benedetto, J. J.

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3, 505–523 (1997).
[CrossRef]

Beyon, J. Y.

Blume, N.

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.

Braun, M.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Browell, E. V.

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
[CrossRef]

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Campbell, J.

J. Campbell, “Synthetic quadrature phase detector/demodulator for Fourier transform spectrometers,” Appl. Opt. 47, 6889–6894 (2008).
[CrossRef]

J. Campbell, “The SMM model as a boundary value problem using the discrete diffusion equation,” Theor. Popul. Biol. 72, 539–546 (2007).
[CrossRef]

J. Campbell, “Ground state energy for the Hartree–Fock equations with Dirichlet boundary conditions,” Math. Phys. Appl. Math. 35, 1471–1487 (1994).

Campbell, J. F.

J. F. Campbell, “Nonlinear swept frequency technique for CO2 measurements using a CW laser system,” Appl. Opt. 52, 3100–3107 (2013).
[CrossRef]

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011).
[CrossRef]

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
[CrossRef]

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

Chen, S.

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

Choi, Y.

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

Comeron, A.

Conradi, J.

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5, 224–226 (1993).
[CrossRef]

Davis, R. E.

Dios, F.

Dobbs, M.

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.

Dobbs, M. E.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Dobler, J.

B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
[CrossRef]

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Dobler, J. T.

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

Donohoe, J. P.

B. J. Skinner, J. P. Donohoe, and F. M. Ingels, “Matched FSK/PSK radar,” in IEEE Proceedings of the 1994 National Radar Conference, Atlanta, Georgia, March1994.

Fenn, M. A.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

Flood, M. A.

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011).
[CrossRef]

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
[CrossRef]

Freeman, J.

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5, 224–226 (1993).
[CrossRef]

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Gregory, D.

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.

Gross, B.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Harrison, F. W.

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
[CrossRef]

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

Hasselbrack, W. E.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Hirade, K.

K. Mupota and K. Hirade, “GMSK modulation for digital mobile radio telephony,” IEEE Trans. Commun. 29, 1044–1050 (1981).
[CrossRef]

Hirano, Y.

Hodson, W. D.

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
[CrossRef]

Imaki, M.

Ingels, F. M.

B. J. Skinner, J. P. Donohoe, and F. M. Ingels, “Matched FSK/PSK radar,” in IEEE Proceedings of the 1994 National Radar Conference, Atlanta, Georgia, March1994.

Ismail, S.

Kameyama, S.

Kavaya, M. J.

Kawa, S. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Kawakami, S.

Kimura, T.

Koch, G. J.

Kooi, S.

Kooi, S. A.

B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
[CrossRef]

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

Lin, B.

Mao, J.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

McGregor, D.

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Meadows, B. L.

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

Moore, B.

B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
[CrossRef]

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

Moshary, F.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Mupota, K.

K. Mupota and K. Hirade, “GMSK modulation for digital mobile radio telephony,” IEEE Trans. Commun. 29, 1044–1050 (1981).
[CrossRef]

Nagel, J.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

Nakajima, M.

Nehrir, A. R.

Overbeck, J.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Petros, M.

Petway, L. B.

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

Prasad, N. S.

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
[CrossRef]

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011).
[CrossRef]

Pruitt, J.

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.

Refaat, T.

Riris, H.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Sakaizawa, D.

Shannon, C. E.

C. E. Shannon, “Communication in the presence of noise (reprint),” Proc. IEEE 86, 447–457 (1988).

Sharp, W.

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.

Singh, U. N.

Skinner, B. J.

B. J. Skinner, J. P. Donohoe, and F. M. Ingels, “Matched FSK/PSK radar,” in IEEE Proceedings of the 1994 National Radar Conference, Atlanta, Georgia, March1994.

Sun, X.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Temyanko, V. L.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

Ueno, S.

Vay, S.

Vay, S. A.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

Watson, G. N.

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University, 1927, reprint 1992), p. 462.

Weaver, C. J.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

Whittaker, E. T.

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University, 1927, reprint 1992), p. 462.

Yu, J.

Zaccheo, T.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

Zaccheo, T. S.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

Zimmermann, G.

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3, 505–523 (1997).
[CrossRef]

Am. J. Phys. (1)

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79, 1240–1245 (2011).
[CrossRef]

Appl. Opt. (7)

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
[CrossRef]

J. Campbell, “Synthetic quadrature phase detector/demodulator for Fourier transform spectrometers,” Appl. Opt. 47, 6889–6894 (2008).
[CrossRef]

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

J. F. Campbell, “Nonlinear swept frequency technique for CO2 measurements using a CW laser system,” Appl. Opt. 52, 3100–3107 (2013).
[CrossRef]

B. Lin, S. Ismail, F. W. Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer for atmospheric CO2 column measurements,” Appl. Opt. 52, 7062–7077 (2013).
[CrossRef]

Appl. Phys. B (1)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Freeman and J. Conradi, “Gain modulation response of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 5, 224–226 (1993).
[CrossRef]

IEEE Trans. Commun. (1)

K. Mupota and K. Hirade, “GMSK modulation for digital mobile radio telephony,” IEEE Trans. Commun. 29, 1044–1050 (1981).
[CrossRef]

J. Fourier Anal. Appl. (1)

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3, 505–523 (1997).
[CrossRef]

Math. Phys. Appl. Math. (1)

J. Campbell, “Ground state energy for the Hartree–Fock equations with Dirichlet boundary conditions,” Math. Phys. Appl. Math. 35, 1471–1487 (1994).

Opt. Eng. (1)

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50, 126002 (2011).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

C. E. Shannon, “Communication in the presence of noise (reprint),” Proc. IEEE 86, 447–457 (1988).

Theor. Popul. Biol. (1)

J. Campbell, “The SMM model as a boundary value problem using the discrete diffusion equation,” Theor. Popul. Biol. 72, 539–546 (2007).
[CrossRef]

Other (10)

S. Chen, Y. Bai, L. B. Petway, B. L. Meadows, J. F. Campbell, F. W. Harrison, and E. V. Browell, “Digital Lock-in detection for multiple-frequency intensity-modulated wave lidar,” in 26th International Laser Radar Conference, S1P-38, Porto Heli, Greece, 25–29 June, 2012.

M. Dobbs, J. Pruitt, N. Blume, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for earth, weather and exploration,” in NASA ESTO Conference, June2006.

M. E. Dobbs, J. Dobler, M. Braun, D. McGregor, J. Overbeck, B. Moore, E. V. Browell, and T. Zaccheo, “A modulated CW fiber laser-lidar suite for the ASCENDS mission,” in Proceedings of the 24th International Laser Radar Conference, Boulder, Colorado, 24–29 July, 2008.

J. T. Dobler, J. Nagel, V. L. Temyanko, T. S. Zaccheo, E. V. Browell, F. W. Harrison, and S. A. Kooi, “Advancements in a multifunctional fiber laser lidar for measuring atmospheric CO2 and O2,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation (92nd AMS Annual Meeting), New Orleans, Louisiana, 22–26 January, 2012.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, and S. R. Kawa, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” in 8th International Carbon Dioxide Conference (ICDC8), Jena, Germany, 13–19 September, 2009.

E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University, 1927, reprint 1992), p. 462.

NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (The National Academies, 2007).

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne laser CO2 column measurements: evaluation of precision and accuracy under wide range of conditions,” in Fall AGU Meeting, San Francisco, California, 5–9 December, 2011.

E. V. Browell, J. T. Dobler, S. A. Kooi, M. A. Fenn, Y. Choi, S. A. Vay, F. W. Harrison, and B. Moore, “Airborne validation of laser CO2 and O2 column measurements,” in Proceedings, 16th Symposium on Meteorological Observation and Instrumentation, 92nd AMS Annual Meeting, New Orleans, Louisiana, 22–26 January, 2012.

B. J. Skinner, J. P. Donohoe, and F. M. Ingels, “Matched FSK/PSK radar,” in IEEE Proceedings of the 1994 National Radar Conference, Atlanta, Georgia, March1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Baseline instrument block diagram with either bandpass or low-pass-filtered receiver subsystem. Current baseline uses a bandpass filter.

Fig. 2.
Fig. 2.

Quadrature-matched filter correlator used for demodulation is similar to a standard quadrature demodulator except the low-pass filter section has been replaced by a matched-filter correlation with the reference PN code kernel.

Fig. 3.
Fig. 3.

Comparison between cosine (a) and sine wave modulation (b) for amplitude-modulation case as in Eq. (6). Each modulation waveform produces a different autocorrelation function.

Fig. 4.
Fig. 4.

Comparison between autocorrelation function for cosine wave (a) and sine wave case (b) with ML-sequence modulation with one cycle per code bit and eight samples per code bit using a 35 sample delay. Half-height width is identical to the pure ML-sequence case.

Fig. 5.
Fig. 5.

Comparison between cosine (a) and sine wave modulation (b) for PSK modulation case as in Eq. (8). Each modulation waveform produces a different autocorrelation function.

Fig. 6.
Fig. 6.

EDFA optical amplifier step response (signal modulation).

Fig. 7.
Fig. 7.

Plot of hybrid sine wave pulse laser modulation signal, using modulation waveform shown in Eq. (9), assuming m=1. Note that the received signal in a DC coupled system will be proportional to the modulation signal.

Fig. 8.
Fig. 8.

Autocorrelation function for hybrid pulse modulation using a 35 sample delay.

Fig. 9.
Fig. 9.

Comparison of frequency content of the filtered versus unfiltered PN code. Filtered PN code bandwidth is well under the Nyquist sampling rate demonstrating aliasing is no longer an issue.

Fig. 10.
Fig. 10.

Comparison between filtered PN code and unfiltered PN code.

Fig. 11.
Fig. 11.

Autocorrelation function for filtered versus unfiltered PN code (filtered case was correlated with unfiltered reference using a 35 sample delay). Off-pulse values are zero to within numerical precision.

Fig. 12.
Fig. 12.

Filtered PN code and resulting amplitude modulated sine wave.

Fig. 13.
Fig. 13.

Frequency spectra of the filtered modulation versus unfiltered modulation. Modulation bandwidth for the filtered case is under the Nyquist sampling rate demonstrating aliasing is not an issue.

Fig. 14.
Fig. 14.

Comparison of autocorrelation functions between filtered modulation case and unfiltered modulation case using a 35 sample delay. Off-pulse values are zero to within numerical precision.

Fig. 15.
Fig. 15.

Filtered PN code and resulting PSK modulated sine wave.

Fig. 16.
Fig. 16.

Frequency spectra of the filtered modulation versus unfiltered modulation. Modulation bandwidth for the filtered case is under the Nyquist sampling rate demonstrating aliasing is not an issue.

Fig. 17.
Fig. 17.

Hybrid pulse modulation with filtered PN code modulation.

Fig. 18.
Fig. 18.

Comparison of the frequency spectra between the filtered and unfiltered hybrid pulse case. In this case, the filtered PN code modulation bandwidth is under the Nyquist rate, but the unfiltered modulation has a limited bandwidth too.

Fig. 19.
Fig. 19.

Comparison between the filtered versus unfiltered autocorrelation functions for the hybrid pulse case, using a 35 sample delay. Off-pulse values are zero to within numerical precision.

Tables (1)

Tables Icon

Table 1. Comparison of Several Different Modulationsa

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

Λoff=1+mξ(t),Λon=1+mξ(tΔt),
PoffR(t)=Kr2P¯offTexp(2ε0rβ(r)dr)exp(2τ)(1+mξ(t2r/c))PonR(t)=Kr2P¯onTexp(2ε0rβ(r)dr)exp(2τ)exp(2τ)(1+mξ(t2r/cΔt)),
S(t)=k[C1kmξ(t2rk/cΔt)+C2kmξ(t2rk/c)],
C1k=Kkr2P¯onTexp(2τ0rkβ(r)dr)exp(2τk)exp(2τk)C2k=Kkr2P¯offTexp(2ε0rkβ(r)dr)exp(2τk),
τg=12ln(C2gP¯onTC1gP¯offT)=12ln(P¯off,gRP¯onTP¯on,gRP¯offT),
ξa(n)=Z(n)cos(2π(n1/2)P/M),ξb(n)=Z(n)sin(2π(n1/2)P/M).
R(ref,data)=1Nm=0N1ref*(m)data(m+n)=DFT1(DFT*(ref)DFT(data)),
ξa(n)=(2Z(n)1)cos(2π(n1/2)P/M),ξb(n)=(2Z(n)1)sin(2π(n1/2)P/M).
ξ(n)=(1cos(2π(n1/2)P/M))Z(n)1=2sin2(π(n1/2)P/M)Z(n)1.
G(x)=n=exp((xnL)2/2σ2).
n=exp((xnL)2/2σ2)=2π|σL|[1+2n=0qn2cos(2πnx/L)]2π|σL|ϑ3(πx/L,q),
q=exp(2π2σ2/L2).
W(x,L,q)=ϑ3(πx/L,q)/ϑ3(0,q).
σL2=1N(2Z1)2sin2(2πftj)η2=1Nsin2(2πftj)η21N12σ2,
σL12Nσ.
σU2=1N(2Z1)2cos2(2πftj)η2=1Ncos2(2πftj)η21N12σ2.
σU12Nσ.
σL2=1NZ2sin2(2πftj)η21N14σL2,
σL12Nσ.
σU2=1NZ2cos2(2πftj)η21N14σ2,
σU12Nσ.
Stot=(SL+ηL)2+(SU+ηU)2.
S=SL2+SU2.
Stot=S1+2SLS2ηL+2SUS2ηU+(ηLS)2+(ηUS)2S(1+SLS2ηL+SUS2ηU)=S+sin(ϕ)ηL+cos(ϕ)ηU.
ηoutsin(ϕ)ηL+cos(ϕ)ηU.
σout2=ηout2(sin(ϕ)ηL+cos(ϕ)ηU)2=sin2(ϕ)ηL2+2sin(ϕ)cos(ϕ)ηLηU+cos2(ϕ)ηU2.
σout2=(sin2(ϕ)+cos2(ϕ))ηL2=σL2σU2.
SNR=Sσout=SσLSσU.
SL=14asin(ϕ),SU=14acos(ϕ),
SNRSσL=SL2+SU2σL=aN22σ.
SL=14asin(ϕ),SU=14acos(ϕ),
SNRSσL=SL2+SU2σL=aN2σ.
SL=12asin(ϕ),SU=12acos(ϕ),
SNRSσL=SL2+SU2σL=aN2σ.
S=N+1Naa.
σout2=1N(2Z1)2(ηη¯)2=1N(ηη¯)2=1Nσ2.
SNR=SσoutaNσ.
η¯out=(2Z1)η¯=1Ncη¯,
n=f(n)=k=f(k),
f(k)=f(n)exp(2πikn)dn,
f^(k)=exp((xnL)2/2σ2)exp(2πikn)dn=2π|σL|exp(2π2σ2k2/L2)exp(2πkx/L),
F(x)=2π|σL|k=exp(2π2σ2k2/L2)exp(2πkx/L)=2π|σL|[1+2k=0qn2cos(2πkx/L)]=2π|σL|ϑ3(πx/L,q).

Metrics