Abstract

Optical microangiography (OMAG) is a method that enables the noninvasive extraction of blood vessels within biological tissues. OMAG B-frames are prone to noise; therefore, techniques such as B-frame averaging have been applied to reduce these effects. A drawback of this method is that the total acquisition time and amount of data collected are increased; hence, the data are susceptible to motion artifacts and decorrelation. In this paper we propose using an image filter on a nonaveraged OMAG B-frame to reduce its noise. Consequently, B-frames comparable to the averaged OMAG B-frame are obtained, while reducing the total acquisition and processing time. The method is tested with two different systems, a high-resolution spectral domain and a relatively low-resolution swept-source optical coherence tomography system. It is demonstrated that the weighted average filter produces the lowest B-frame error; however, all filters produce comparable results when quantifying the en face projection view image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef]
  4. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007).
    [CrossRef]
  5. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17, 22190–22200 (2009).
    [CrossRef]
  6. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15, 016029 (2010).
    [CrossRef]
  7. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).
    [CrossRef]
  8. Y. Wang and R. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35, 3538–3540 (2010).
    [CrossRef]
  9. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2, 1184–1193 (2011).
    [CrossRef]
  10. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4, 583–587 (2011).
    [CrossRef]
  11. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012).
    [CrossRef]
  12. G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012).
    [CrossRef]
  13. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33, 1530–1532 (2008).
    [CrossRef]
  14. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35, 1257–1259 (2010).
    [CrossRef]
  15. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
    [CrossRef]
  16. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
    [CrossRef]
  17. R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
    [CrossRef]
  18. P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2, 3109–3118 (2011).
    [CrossRef]
  19. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express 2, 2770–2783 (2011).
    [CrossRef]
  20. Y. Jia, N. Alkayed, and R. K. Wang, “Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo,” J. Biomed. Opt. 14, 040505 (2009).
    [CrossRef]
  21. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011).
    [CrossRef]
  22. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
    [CrossRef]
  23. J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
    [CrossRef]
  24. S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
    [CrossRef]
  25. R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
    [CrossRef]
  26. S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013).
    [CrossRef]
  27. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
    [CrossRef]
  28. R. Reif and R. K. Wang, “Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography,” Quant. Imaging Med. Surg. 2, 207–212 (2012).
  29. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
    [CrossRef]
  30. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24, 1901–1910 (2007).
    [CrossRef]
  31. Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, AMLBook (2012).
  32. Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
    [CrossRef]
  33. S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

2013 (3)

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013).
[CrossRef]

2012 (7)

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
[CrossRef]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012).
[CrossRef]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012).
[CrossRef]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

R. Reif and R. K. Wang, “Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography,” Quant. Imaging Med. Surg. 2, 207–212 (2012).

2011 (6)

2010 (4)

2009 (4)

2008 (2)

2007 (2)

2003 (2)

2000 (1)

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Abu-Mostafa, Y. S.

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, AMLBook (2012).

Alkayed, N.

Y. Jia, N. Alkayed, and R. K. Wang, “Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo,” J. Biomed. Opt. 14, 040505 (2009).
[CrossRef]

An, L.

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
[CrossRef]

Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011).
[CrossRef]

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express 2, 2770–2783 (2011).
[CrossRef]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2, 3109–3118 (2011).
[CrossRef]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[CrossRef]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[CrossRef]

Bajraszewski, T.

Bilenca, A.

Bouma, B. E.

Cable, A.

Cense, B.

Chen, Z.

Choma, M.

de Boer, J. F.

Desjardins, A. E.

Dziennis, S.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
[CrossRef]

Enfield, J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4, 583–587 (2011).
[CrossRef]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2, 1184–1193 (2011).
[CrossRef]

Fingler, J.

Fraser, S. E.

Fujimoto, J. G.

Gareau, D.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
[CrossRef]

Gruber, A.

Grulkowski, I.

Hanson, S. R.

Hornegger, J.

Huang, D.

Hurst, S.

Izatt, J.

Jacques, S. L.

Jarvi, M.

Jia, Y.

Jiang, J.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
[CrossRef]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33, 1530–1532 (2008).
[CrossRef]

Johnstone, M.

Jonathan, E.

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2, 1184–1193 (2011).
[CrossRef]

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4, 583–587 (2011).
[CrossRef]

Jung, Y.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011).
[CrossRef]

Khurana, M.

Kowalczyk, A.

Kraus, M. F.

Leahy, M.

Leahy, M. J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4, 583–587 (2011).
[CrossRef]

Lee, K.

Leung, M. K. K.

Li, P.

Lin, A. J.

Lin, H.-T.

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, AMLBook (2012).

Liu, G.

Liu, J. J.

Ma, Z.

Magdon-Ismail, M.

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, AMLBook (2012).

Mariampillai, A.

Moriyama, E. H.

Munce, N. R.

Nelson, J. S.

Nuttall, A. L.

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

Ozcan, A.

Park, B. H.

Pierce, M. C.

Potsaid, B.

Qin, J.

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013).
[CrossRef]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
[CrossRef]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
[CrossRef]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[CrossRef]

Reif, R.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

R. Reif and R. K. Wang, “Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography,” Quant. Imaging Med. Surg. 2, 207–212 (2012).

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
[CrossRef]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2, 3109–3118 (2011).
[CrossRef]

Sarunic, M.

Saxer, C.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schwartz, D.

Shen, Q.

Shen, T. T.

Shi, L.

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

Standish, B. A.

Subhash, H.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tan, O.

Tearney, G. J.

Tokayer, J.

Tromberg, B. J.

Vitkin, A.

Vitkin, I. A.

Wang, R.

Wang, R. K.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

R. Reif and R. K. Wang, “Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography,” Quant. Imaging Med. Surg. 2, 207–212 (2012).

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
[CrossRef]

Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011).
[CrossRef]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2, 3109–3118 (2011).
[CrossRef]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[CrossRef]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[CrossRef]

Y. Jia, N. Alkayed, and R. K. Wang, “Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo,” J. Biomed. Opt. 14, 040505 (2009).
[CrossRef]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007).
[CrossRef]

Wang, Y.

Werner, J. S.

Wilson, B. C.

Wojtkowski, M.

Xiang, S.

Yang, C.

Yang, V. X. D.

Yousefi, S.

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013).
[CrossRef]

Yu, L.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15, 016029 (2010).
[CrossRef]

Zawadzki, R. J.

Zhao, Y.

Zheng, Y.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

Zhi, Z.

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
[CrossRef]

Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011).
[CrossRef]

Biomed. Opt. Express (7)

Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2, 1059–1068 (2011).
[CrossRef]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2, 1184–1193 (2011).
[CrossRef]

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second,” Biomed. Opt. Express 2, 2770–2783 (2011).
[CrossRef]

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2, 3109–3118 (2011).
[CrossRef]

J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3, 455–466 (2012).
[CrossRef]

G. Liu, A. J. Lin, B. J. Tromberg, and Z. Chen, “A comparison of Doppler optical coherence tomography methods,” Biomed. Opt. Express 3, 2669–2680 (2012).
[CrossRef]

S. Yousefi, J. Qin, and R. K. Wang, “Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo,” Biomed. Opt. Express 4, 1214–1228 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Int. J. Biomed. Imag. (1)

R. Reif, J. Qin, L. An, Z. Zhi, S. Dziennis, and R. K. Wang, “Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system,” Int. J. Biomed. Imag. 2012, 509783 (2012).
[CrossRef]

J. Biomed. Opt. (3)

Y. Jia, N. Alkayed, and R. K. Wang, “Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo,” J. Biomed. Opt. 14, 040505 (2009).
[CrossRef]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15, 016029 (2010).
[CrossRef]

S. Dziennis, R. Reif, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Effects of hypoxia on cochlear blood flow in mice using Doppler optical microangiography,” J. Biomed. Opt. 17, 106003 (2012).
[CrossRef]

J. Biophotonics (1)

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4, 583–587 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43, 122–129 (2011).
[CrossRef]

Opt. Express (8)

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008).
[CrossRef]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15, 4083–4097 (2007).
[CrossRef]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012).
[CrossRef]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17, 8926–8940 (2009).
[CrossRef]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express 17, 14281–14297 (2009).
[CrossRef]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17, 22190–22200 (2009).
[CrossRef]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[CrossRef]

Opt. Lett. (5)

PLoS One (2)

Y. Jung, S. Dziennis, Z. Zhi, R. Reif, Y. Zheng, and R. K. Wang, “Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography,” PLoS One 8, e57976 (2013).
[CrossRef]

R. Reif, J. Qin, L. Shi, S. Dziennis, Z. Zhi, A. L. Nuttall, and R. K. Wang, “Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system,” PLoS One 7, e52041 (2012).
[CrossRef]

Quant. Imaging Med. Surg. (2)

R. Reif and R. K. Wang, “Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography,” Quant. Imaging Med. Surg. 2, 207–212 (2012).

S. Yousefi, J. Qin, Z. Zhi, and R. K. Wang, “Uniform enhancement of optical micro-angiography images using Rayleigh contrast-limited adaptive histogram equalization,” Quant. Imaging Med. Surg. 3, 5–17 (2013).

Other (1)

Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data, AMLBook (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of (a) spectral-domain OCT system and (b) swept-source OCT system. SLD, super-luminescent diode; SS, swept source. (c) Photograph of the mouse pinna. The red box in the picture indicates the area imaged by the OCT system.

Fig. 2.
Fig. 2.

Example of the values used on a 7×7 window size WA filter.

Fig. 3.
Fig. 3.

Cross-sectional (a) structural and (b) OMAG B-frame image of the mouse pinna using the SDOCT system, and processed with the A-OMAG method. The white line is 500 μm.

Fig. 4.
Fig. 4.

(a)–(e) Cross-sectional flow image for the NA-OMAG (a) with no filter, and with (b) average, (c) Gaussian, (d) median, and (e) WA filters. (f)–(j) Squared difference between the A-OMAG B-frame [Fig. 3(b)] and the NA-OMAG B-frame (f) with no filter, and with (g) average, (h) Gaussian, (i) median, and (j) WA filters. The images were captured with an SDOCT system.

Fig. 5.
Fig. 5.

Mean and standard deviation of the cost function [Eq. (4)] of the training set after applying no filter, and average, Gaussian, median, and WA filters on the NA-OMAG B-frames. The results were obtained from (a) SDOCT and (b) SSOCT systems.

Fig. 6.
Fig. 6.

En face large image projection view of the mouse pinna after stitching 12 acquired areas. The image was obtained from the selected region in Fig. 1(c). SDOCT images created using (a) A-OMAG B-frames and (c) WA filter applied over NA-OMAG B-frames. SSOCT images created using (b) A-OMAG B-frames and (d) WA filter applied over NA-OMAG B-frames. White line is 1 mm. The red square indicates a typical 2.2mm×2.2mm area.

Fig. 7.
Fig. 7.

(a)–(c) Close-up of the red square area in Fig. 6(a) of the SDOCT system with (a) A-OMAG, (b) NA-OMAG with no filter, and (c) NA-OMAG with WA filter. (d)–(f) Vessel length fraction multiplied by the black and white binary vessel image of (d) A-OMAG, (e) NA-OMAG with no filter, and (f) NA-OMAG with WA filter. Red square in (a) is the window size that calculates the vessel length fraction.

Fig. 8.
Fig. 8.

Average and standard deviation of the percentage error between the vessel length fraction calculated over the NA-OMAG image with different filters and the A-OMAG image using both systems, the (a) SDOCT and (b) SSOCT systems.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(t,k)=2S(k)ER[a(z,t)cos[2kn(t)z]dz+a(z1)cos[2kn(t)(z1vt)]],
I(t,z)=FT[I(t,k)]=M(t,z)eiφ(t,z).
Iflow(ti,z)=i=1N|M(ti+1,z)M(ti,z)|N,
J=1Mi=1M[h(x(i))y(i)]2,
hθ(x)=θTx,
θ=(XTX)1XTy,

Metrics