Abstract

The influence of the incidence angle and polarization state on the damage site characteristics of fused silica under 355 nm laser irradiation was investigated. The initial damage morphologies and growth behaviors of the damage sites on the exit surface at incidence angles of 0° and 45° as well as in P and S states were compared to investigate the effects of various angles and polarization states. The relationships between the size of the initial damage sites and the laser fluence, as well as the growth threshold, were discussed. The damage morphologies of the craters and cracks at different incidence angles and polarization states were then investigated. Finally, the growth characteristics of the lateral size, crater depth, and crack depth were compared and analyzed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [CrossRef]
  2. X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
    [CrossRef]
  3. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
    [CrossRef]
  4. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
    [CrossRef]
  5. S. G. Demos and M. Staggs, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
    [CrossRef]
  6. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
    [CrossRef]
  7. M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
    [CrossRef]
  8. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19, A859–A864 (2011).
    [CrossRef]
  9. R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
    [CrossRef]
  10. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010).
    [CrossRef]
  11. R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98, 051901 (2011).
    [CrossRef]
  12. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef]
  13. S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
    [CrossRef]
  14. G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
    [CrossRef]
  15. M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
    [CrossRef]
  16. S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104, 063101 (2008).
    [CrossRef]
  17. S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
    [CrossRef]
  18. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
    [CrossRef]
  19. A. Salleo, R. Chinsio, and F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999).
    [CrossRef]

2013 (1)

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

2011 (2)

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98, 051901 (2011).
[CrossRef]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19, A859–A864 (2011).
[CrossRef]

2010 (1)

2009 (1)

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

2008 (2)

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104, 063101 (2008).
[CrossRef]

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

2007 (2)

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

2005 (1)

2004 (4)

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

2003 (1)

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

2002 (1)

2001 (2)

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

1999 (1)

A. Salleo, R. Chinsio, and F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999).
[CrossRef]

Adams, J. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Bercegol, H.

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[CrossRef]

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Birolleau, J.-C.

Bordenave, E.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

Boscheron, A.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

Bude, J. D.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Bumham, A.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Carr, C. W.

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19, A859–A864 (2011).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Chase, L. L.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Cheng, X. B.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Chinsio, R.

A. Salleo, R. Chinsio, and F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999).
[CrossRef]

Courchinoux, R.

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

Cross, D. A.

Demos, S. G.

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98, 051901 (2011).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

S. G. Demos and M. Staggs, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
[CrossRef]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Ding, T.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Donohue, E. E.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Donval, T.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

Feit, M. D.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Génin, F. Y.

A. Salleo, R. Chinsio, and F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999).
[CrossRef]

Hackel, R. P.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

Hollingsworth, W. G.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

Hrubesh, L. W.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Jarboe, J. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Josse, M.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Kozlowski, M. R.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Lamaignere, L.

Lamaignère, L.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Laurence, T. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Lepage, C.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

Li, H. Q.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Loiseau, M.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Matthews, M. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Mazataud, E.

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

McElroy, J. N.

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Milam, D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Miller, P. E.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Molander, W. A.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Morchain, J. M.

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Neauport, J.

Neeb, K. P.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Negres, R. A.

Norton, M. A.

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19, A859–A864 (2011).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Papernov, S.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104, 063101 (2008).
[CrossRef]

Pilon, F.

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Raman, R. N.

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98, 051901 (2011).
[CrossRef]

Razé, G.

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Rubenchik, A. M.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Salleo, A.

A. Salleo, R. Chinsio, and F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999).
[CrossRef]

Schmid, A. W.

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104, 063101 (2008).
[CrossRef]

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

Sell, W. D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Shen, N.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Spaeth, M. L.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

Staggs, M.

S. G. Demos and M. Staggs, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
[CrossRef]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Steele, W. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Sudre, C.

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Wang, Z. S.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Wegner, P.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Wei, Z. Y.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Wong, L. L.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Wu, Z.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

Zhang, J. L.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98, 051901 (2011).
[CrossRef]

J. Appl. Phys. (1)

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104, 063101 (2008).
[CrossRef]

Light Sci. Appl. (1)

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2, e80 (2013).
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Proc. SPIE (11)

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Bumham, and H. B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

G. Razé, J. M. Morchain, M. Loiseau, L. Lamaignère, M. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

M. Loiseau, L. Lamaignère, R. Courchinoux, G. Razé, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: from samples to large-aperture optical components,” Proc. SPIE 5252, 412–422 (2004).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468–473 (2001).
[CrossRef]

M. A. Norton, E. E. Donohue, W. G. Hollingsworth, J. N. McElroy, and R. P. Hackel, “Growth of laser initiated damage in fused silica at 527 nm,” Proc. SPIE 5273, 236–243 (2004).
[CrossRef]

R. Courchinoux, G. Razé, C. Sudre, M. Josse, A. Boscheron, C. Lepage, E. Mazataud, E. Bordenave, L. Lamaignère, M. Loiseau, T. Donval, and H. Bercegol, “Laser-induced damage growth with small and large beams: Comparison between laboratory experiments and large-scale laser data,” Proc. SPIE 5273, 99–106 (2004).
[CrossRef]

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2007).
[CrossRef]

A. Salleo, R. Chinsio, and F. Y. Génin, “Crack propagation in fused silica during UV and IR ns-laser illumination,” Proc. SPIE 3578, 456–471 (1999).
[CrossRef]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the test system for laser-induced damage threshold test system.

Fig. 2.
Fig. 2.

Characteristics of the initial damage sites. The relationships between the lateral size, crater depth, and laser fluences at incidence angles of 0° and 45° are fitted using a linear formula. Twelve data points and the average values of the laser fluences are shown. (a) Lateral sizes at 0°. (b) Lateral sizes at 45°. (c) Crater depths at 0°. (d) Crater depths at 45°.

Fig. 3.
Fig. 3.

Lateral size/crater depth ratios at different conditions, which are described by linear fits, y0=3.37+0.389x0, y45P=1.83+0.444x45P, and y45S=0.90+0.365x45S. (a) 0° versus 45°and P polarization. (b) P versus S polarization at 45°.

Fig. 4.
Fig. 4.

Growth thresholds of the initial damage sites generated by different incidence angles and polarization states. The decreasing trends can be fitted in linear formulas, y0=10.70.054x0, y45P=9.970.071x45P, and y45S=7.6.

Fig. 5.
Fig. 5.

Typical top and side views of the damage sites at different incidence angles. The contrast of the images in the vertical directions shows that the cracks are not symmetrical and slightly change at different observation angles. No evidence of the directional expansion from the crater profiles is found. (a) 0° incidence angle. (b) 45° incidence angle.

Fig. 6.
Fig. 6.

Typical lateral and vertical views of the damage sites generated at different irradiation conditions. All the damage sites were initiated by 28.5J/cm2 but further irradiated at (a) 9.5J/cm2 with 50 shots and 28.5J/cm2 with 10 shots at an incidence angle of 0°, (b) 8.1J/cm2 with 50 shots and 28.5J/cm2 with 10 shots at an incidence angle of 45° at P polarization state and (c) 7.6J/cm2 with 50 shots and 28.5J/cm2 with 10 shots at an incidence angle of 45° at S polarization state. (a-0) 9.5J/cm2 with 50 shots at 0° (a-1) 28.5J/cm2 with 10 shots at 0°. (b-0) 8.1J/cm2 with 50 shots at 45° (b-1) 28.5J/cm2 with 10 shots at 45°. (c-0) 7.6J/cm2 with 50 shots at 45°-S (c-1) 28.5J/cm2 with 10 shots at 45°-S.

Fig. 7.
Fig. 7.

Comparison of the growth trends of lateral sizes, crater depths, and cracks depths. The average values were obtained from three sets of results. The initial damage sites were initiated by 19J/cm2 and grown at 14.25J/cm2. (a) Growth trends comparison of lateral sizes. (b) Growth trends comparison of crater depths. (c) Growth trends comparison of crack depths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Dn=D0eαNn,
Hn=H0eαNn,
Ln=L0+βNn.

Metrics