Abstract

HfO2/SiO2 dichroic mirrors, having high reflectance at 1064 nm and high transmittance at 532 nm, play an important role in high-power laser systems. However, the half-wave hole effect, caused mainly by the refractive index inhomogeneity of hafnia, affects the spectra and application of these mirrors. Two approaches to eliminate the half-wave hole effect have been proposed. Both approaches attempt to shift the location of the half-wave hole in comparison with the original wavelength. One approach broadens the reflectance band of the first harmonic wavelength and simultaneously adjusts the central reflectance band to a longer wavelength, whereas the other approach combines the two stacks to adjust the location of the half-wave hole far away from the wavelength of interest. Two kinds of dichroic mirrors have been successfully fabricated; moreover, it was found that the method of a two-stack combination, 0.9(HL)8 and 1.1(HL)8, provides designs that can be fabricated more easily and with better quality spectral characteristics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
    [CrossRef]
  2. C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
    [CrossRef]
  3. X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
    [CrossRef]
  4. H. F. Jiao, X. B. Cheng, J. T. Lu, G. H. Bao, Y. L. Liu, B. Ma, P. F. He, and Z. S. Wang, “Effects of substrate temperatures on the structure and properties of hafnium dioxide films,” Appl. Opt. 50, C309–C315 (2011).
    [CrossRef]
  5. J. Wang, R. L. Maier, and H. Schreiber, “Crystal phase transition of HfO2 films evaporated by plasma-ion-assisted deposition,” Appl. Opt. 47, C189–C192 (2008).
    [CrossRef]
  6. J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, and P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
    [CrossRef]
  7. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23, 3567–3570 (1984).
    [CrossRef]
  8. G. Parjadis de Larivière, J. M. Frigerio, J. Rivory, and F. Abelès, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry,” Appl. Opt. 31, 6056–6061 (1992).
    [CrossRef]
  9. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
    [CrossRef]
  10. J. R. Jacobsson, “Review of the optical properties of inhomogeneous thin films,” Proc. SPIE 2046, 2–8 (1993).
    [CrossRef]
  11. A. V. Tikhonravov, M. K. Trubetskov, and A. V. Krasilnikova, “Spectroscopic ellipsometry of slightly inhomogeneous nonabsorbing thin films with arbitrary refractive-index profiles: theoretical study,” Appl. Opt. 37, 5902–5911 (1998).
    [CrossRef]
  12. A. V. Tikhonravov and M. K. Trubetskov, “Online characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2004).
    [CrossRef]
  13. D. Poitras, “Admittance diagrams of accidental and premeditated optical inhomogeneities in coatings,” Appl. Opt. 41, 4671–4679 (2002).
    [CrossRef]
  14. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  15. R. E. Klinger and C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985).
    [CrossRef]
  16. OptiLayer Thin Film software, http://www.optilayer.com .
  17. H. A. Macleod, Thin-film Optical Filters, 3rd ed. (J W Arrowsmith, 2002), pp. 248–250.
  18. J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
    [CrossRef]
  19. X. F. Ma, Y. J. Wang, Z. X. Fan, and J. D. Shao, “Harmonic beam splitter design and fabrication,” Chin. Opt. Lett. 2, 670–672 (2004)
  20. A. V. Tikhonravov and M. K. Trubetskov, “Design of optical coatings taking into account thin film inhomogeneity,” in Optical Interference Coatings, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper TD.6.
  21. C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
    [CrossRef]

2013 (1)

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

2012 (1)

J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
[CrossRef]

2011 (1)

2010 (1)

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

2008 (3)

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

J. Wang, R. L. Maier, and H. Schreiber, “Crystal phase transition of HfO2 films evaporated by plasma-ion-assisted deposition,” Appl. Opt. 47, C189–C192 (2008).
[CrossRef]

2004 (2)

X. F. Ma, Y. J. Wang, Z. X. Fan, and J. D. Shao, “Harmonic beam splitter design and fabrication,” Chin. Opt. Lett. 2, 670–672 (2004)

A. V. Tikhonravov and M. K. Trubetskov, “Online characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2004).
[CrossRef]

2002 (1)

1998 (1)

1997 (2)

A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

1993 (1)

J. R. Jacobsson, “Review of the optical properties of inhomogeneous thin films,” Proc. SPIE 2046, 2–8 (1993).
[CrossRef]

1992 (1)

1985 (1)

1984 (1)

1981 (1)

Abelès, F.

Albrand, G.

Anzellotti, J. F.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Bao, G. H.

Bevis, R. P.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Borgogno, J. P.

Bousquet, P.

Carniglia, C. K.

Cheng, X. B.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
[CrossRef]

H. F. Jiao, X. B. Cheng, J. T. Lu, G. H. Bao, Y. L. Liu, B. Ma, P. F. He, and Z. S. Wang, “Effects of substrate temperatures on the structure and properties of hafnium dioxide films,” Appl. Opt. 50, C309–C315 (2011).
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Ding, T.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Dobrowolski, J. A.

Fan, Z. X.

Flory, F.

Frigerio, J. M.

Genin, F. Y.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Griffin, A. J.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

Gunten, M. K. V.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Han, J.

J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
[CrossRef]

He, P. F.

Jacobsson, J. R.

J. R. Jacobsson, “Review of the optical properties of inhomogeneous thin films,” Proc. SPIE 2046, 2–8 (1993).
[CrossRef]

Jiao, H. F.

H. F. Jiao, X. B. Cheng, J. T. Lu, G. H. Bao, Y. L. Liu, B. Ma, P. F. He, and Z. S. Wang, “Effects of substrate temperatures on the structure and properties of hafnium dioxide films,” Appl. Opt. 50, C309–C315 (2011).
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Kaiser, N.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Klinger, R. E.

Krasilnikova, A. V.

Lazarides, B.

Li, H. Q.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

Liu, Y. L.

Lu, J. T.

Ma, B.

H. F. Jiao, X. B. Cheng, J. T. Lu, G. H. Bao, Y. L. Liu, B. Ma, P. F. He, and Z. S. Wang, “Effects of substrate temperatures on the structure and properties of hafnium dioxide films,” Appl. Opt. 50, C309–C315 (2011).
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Ma, X. F.

Macleod, H. A.

Maier, R. L.

Molau, N. E.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Parjadis de Larivière, G.

Pelletier, E.

Poitras, D.

Reitter, T. A.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Rivory, J.

Roche, P.

Schmitt, B.

Schreiber, H.

Shao, J. D.

Shen, Z. X.

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Smith, D. J.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Stenzel, O.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Stolz, C. J.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Sullivan, B. T.

Thomas, M. D.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

Tikhonravov, A. V.

A. V. Tikhonravov and M. K. Trubetskov, “Online characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and A. V. Krasilnikova, “Spectroscopic ellipsometry of slightly inhomogeneous nonabsorbing thin films with arbitrary refractive-index profiles: theoretical study,” Appl. Opt. 37, 5902–5911 (1998).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Design of optical coatings taking into account thin film inhomogeneity,” in Optical Interference Coatings, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper TD.6.

Trubetskov, M. K.

A. V. Tikhonravov and M. K. Trubetskov, “Online characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2004).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and A. V. Krasilnikova, “Spectroscopic ellipsometry of slightly inhomogeneous nonabsorbing thin films with arbitrary refractive-index profiles: theoretical study,” Appl. Opt. 37, 5902–5911 (1998).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Design of optical coatings taking into account thin film inhomogeneity,” in Optical Interference Coatings, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper TD.6.

Wang, J.

Wang, Y. J.

Wang, Z. S.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
[CrossRef]

H. F. Jiao, X. B. Cheng, J. T. Lu, G. H. Bao, Y. L. Liu, B. Ma, P. F. He, and Z. S. Wang, “Effects of substrate temperatures on the structure and properties of hafnium dioxide films,” Appl. Opt. 50, C309–C315 (2011).
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Wei, Z. Y.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

Wilbrandt, S.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Zhang, J. L.

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

Acta Opt. Sin. (1)

J. Han, J. L. Zhang, X. B. Cheng, and Z. S. Wang, “Analysis of the half-wave hole for symmetrical harmonic beam splitter based on equivalent layer theoretics,” Acta Opt. Sin., 32, 131001 (2012)
[CrossRef]

Appl. Opt. (9)

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, and P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef]

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, and H. A. Macleod, “Refractive index and inhomogeneity of thin films,” Appl. Opt. 23, 3567–3570 (1984).
[CrossRef]

R. E. Klinger and C. K. Carniglia, “Optical and crystalline inhomogeneity in evaporated zirconia films,” Appl. Opt. 24, 3184–3187 (1985).
[CrossRef]

G. Parjadis de Larivière, J. M. Frigerio, J. Rivory, and F. Abelès, “Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry,” Appl. Opt. 31, 6056–6061 (1992).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, “Influence of small inhomogeneities on the spectral characteristics of single thin films,” Appl. Opt. 36, 7188–7198 (1997).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, and A. V. Krasilnikova, “Spectroscopic ellipsometry of slightly inhomogeneous nonabsorbing thin films with arbitrary refractive-index profiles: theoretical study,” Appl. Opt. 37, 5902–5911 (1998).
[CrossRef]

D. Poitras, “Admittance diagrams of accidental and premeditated optical inhomogeneities in coatings,” Appl. Opt. 41, 4671–4679 (2002).
[CrossRef]

J. Wang, R. L. Maier, and H. Schreiber, “Crystal phase transition of HfO2 films evaporated by plasma-ion-assisted deposition,” Appl. Opt. 47, C189–C192 (2008).
[CrossRef]

H. F. Jiao, X. B. Cheng, J. T. Lu, G. H. Bao, Y. L. Liu, B. Ma, P. F. He, and Z. S. Wang, “Effects of substrate temperatures on the structure and properties of hafnium dioxide films,” Appl. Opt. 50, C309–C315 (2011).
[CrossRef]

Chin. Opt. Lett. (1)

Light: Sci. Appl. (1)

X. B. Cheng, J. L. Zhang, T. Ding, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light: Sci. Appl. 2, e80; doi: 10.1038/lsa.2013.362013.
[CrossRef]

Proc. SPIE (6)

J. R. Jacobsson, “Review of the optical properties of inhomogeneous thin films,” Proc. SPIE 2046, 2–8 (1993).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Online characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2004).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

X. B. Cheng, Z. X. Shen, H. F. Jiao, J. L. Zhang, B. Ma, T. Ding, and Z. S. Wang, “Laser damage resistance of dichroic mirrors at 532  nm and 1064  nm,” Proc. SPIE 7842, 78420C (2010).
[CrossRef]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. E. Molau, R. P. Bevis, M. K. V. Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064  nm,” Proc. SPIE 2966, 265 (1997).
[CrossRef]

Other (3)

A. V. Tikhonravov and M. K. Trubetskov, “Design of optical coatings taking into account thin film inhomogeneity,” in Optical Interference Coatings, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper TD.6.

OptiLayer Thin Film software, http://www.optilayer.com .

H. A. Macleod, Thin-film Optical Filters, 3rd ed. (J W Arrowsmith, 2002), pp. 248–250.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Evolution of admittance locus of the stack (HL)8 at 532 nm with 5% inhomogeneity, and a design wavelength of 1064 nm. (a) The admittance of (HL) at 532 nm and (b) the admittance of (HL)8 at 532 nm.

Fig. 2.
Fig. 2.

Theoretical spectrum of a dichroic mirror using Design I. (a) The black solid line is calculated transmittance spectrum of normal (HL)n stack, the gray solid line is the calculated transmittance spectrum of the optimized stack to broaden the stop band (having taken account of the 5% inhomogeneity in each). (b) The black solid line is the calculated transmittance without considering inhomogeneity; the red dashed line is the calculated transmittance with 5% inhomogeneity.

Fig. 3.
Fig. 3.

Theoretical transmittance of a dichroic mirror with different inhomogeneity levels, obtained with Design I. The ripples are more significant as inhomogeneity increases.

Fig. 4.
Fig. 4.

Theoretical spectrum of a dichroic mirror using Design II. (a) The black solid line is the theoretical transmittance of stack 0.9(HL)15 using 5% inhomogeneity, the gray solid line is theoretical transmittance of stack 1.1(HL)15 using 5% inhomogeneity, the design wavelength is 1064 nm. (b) The theoretical spectrum of a dichroic mirror using Design II. The black solid line is the theoretical transmittance without considering inhomogeneity. The red dashed line is the theoretical transmittance with 5% inhomogeneity and the design wavelength is 1064 nm.

Fig. 5.
Fig. 5.

Theoretical transmittance of a dichroic mirror with different inhomogeneity, using Design II. An increase in inhomogeneity barely affected performance of the second harmonic transmission band.

Fig. 6.
Fig. 6.

Refractive index profile of two design methods. (a) Index profile of Design I and (b) Design II.

Fig. 7.
Fig. 7.

(a) Experimental spectrum of a dichroic mirror using Design I. The black solid line is the calculated transmittance using 5% inhomogeneity and the red dashed line is the measurement result. (b) The experimental spectrum of a dichroic mirror using Design II. The black solid line is the calculated transmittance using 5% inhomogeneity and the red dashed line is the measurement result.

Metrics