Abstract

Multidielectric coatings are analytically designed to reach total absorption and maximum field enhancement at resonances. A resonant multi-dielectric stack was fabricated to be resonant at 633 nm for an incidence of 45° under TE-polarization. Field enhancement was expected to be around 1000. We discuss the mismatch with the enhancement measured using near field microscopy and using the scattering effect. In particular, scattering was investigated to serve as a far field characterization of such giant optical fields.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Iwase, D. Englund, and J. Vuckovic, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18, 16546–16560 (2010).
    [CrossRef]
  2. Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect in hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper QWB2.
  3. J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).
  4. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
    [CrossRef]
  5. M. Lequime, “Spectral properties of planar multilayer microcavities,” in Frontiers of Optical Coatings, China, 2009, invited paper.
  6. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
  7. C. Amra and S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997).
    [CrossRef]
  8. W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
    [CrossRef]
  9. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
    [CrossRef]
  10. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
    [CrossRef]
  11. S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
    [CrossRef]
  12. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
    [CrossRef]
  13. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
    [CrossRef]
  14. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [CrossRef]
  15. T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).
  16. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  17. D. Brissinger, A. L. Lereu, L. Salomon, T. Charvolin, B. Cluzel, C. Dumas, A. Passian, and F. de Fornel, “Discontinuity induced angular distribution of photon plasmon coupling,” Opt. Express 19, 17750–17757 (2011).
    [CrossRef]
  18. R. C. Nesnidal and T. G. Walker, “Multilayer dielectric structure for enhancement of evanescent waves,” Appl. Opt. 35, 2226–2229 (1996).
    [CrossRef]
  19. C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
    [CrossRef]
  20. C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.
  21. Y. A. Pirogov and A. V. Tikhonravov, “Multilayer interference absorber with arbitrary thickness of working layer,” Moscow Univ. Phys. Bull 19, 42–48 (1978) (in Russian).
  22. V. Tikhonravov and Y. A. Pirogov, “Multilayer interference absorber with taking into account of losses in non-working layers,” J. Technicheskoi Fiziki 50, 673–679 (1980) (in Russian).
  23. F. Brettenaker and N. Treps, Introduction à: Le Laser, Chap. 3, 78–81 (2010).
  24. J. Massaneda, F. Flory, and E. Pelletier, “Determination of the refractive indices of layers in a multilayer stack by a guided-wave technique,” Appl. Opt. 38, 4177–4181 (1999).
    [CrossRef]
  25. C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
    [CrossRef]
  26. A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
    [CrossRef]
  27. A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
    [CrossRef]
  28. A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
    [CrossRef]
  29. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
    [CrossRef]
  30. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  31. C. Ndiaye, “Exaltation optique gante dans les filtres interfrentiels: Modlisation, optimisation et ralisation,” Ph.D. dissertation (École Centrale de Marseille, 2012).
  32. M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.
  33. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6-MU-M) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
    [CrossRef]
  34. M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50, C217–C221 (2011).
    [CrossRef]
  35. M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

2013

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

2012

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

2011

D. Brissinger, A. L. Lereu, L. Salomon, T. Charvolin, B. Cluzel, C. Dumas, A. Passian, and F. de Fornel, “Discontinuity induced angular distribution of photon plasmon coupling,” Opt. Express 19, 17750–17757 (2011).
[CrossRef]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
[CrossRef]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50, C217–C221 (2011).
[CrossRef]

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

2010

2008

2005

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

2004

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

2000

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

1999

1998

1997

1996

1993

1985

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).

1980

V. Tikhonravov and Y. A. Pirogov, “Multilayer interference absorber with taking into account of losses in non-working layers,” J. Technicheskoi Fiziki 50, 673–679 (1980) (in Russian).

1978

Y. A. Pirogov and A. V. Tikhonravov, “Multilayer interference absorber with arbitrary thickness of working layer,” Moscow Univ. Phys. Bull 19, 42–48 (1978) (in Russian).

1970

1957

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Alvaro, M.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Amra, C.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
[CrossRef]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

C. Amra and S. Maure, “Mutual coherence and conical pattern of sources optimally excited within multilayer optics,” J. Opt. Soc. Am. A 14, 3114–3124 (1997).
[CrossRef]

C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6-MU-M) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
[CrossRef]

M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Ausserr, D.

Bajoni, D.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Ballarini, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Benisty, H.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Berger, V.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Brettenaker, F.

F. Brettenaker and N. Treps, Introduction à: Le Laser, Chap. 3, 78–81 (2010).

Brissinger, D.

Bussolino, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Callcott, T. A.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).

Challener, W. A.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

Charvolin, T.

Cluzel, B.

Dacarro, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Danz, N.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

de Fornel, F.

De Leo, N.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

Delfan, A.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Descrovi, E.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[CrossRef]

Digregorio, G.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Dominici, L.

Dostalek, J.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

Dumas, C.

Dumas, Ph.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

Edwards, J. D.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

Englund, D.

Enrico, E.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

Evans, P. G.

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

Ferrell, T. L.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).

Flory, F.

Frascella, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Galli, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Gerard, J.-M.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Giorgis, F.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[CrossRef]

Giovannini, H.

Guizzetti, G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Herzig, H.-P.

Iwase, H.

Jacob, Z.

Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect in hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper QWB2.

Jonas, U.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

Knoll, W.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

Lemarchand, F.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
[CrossRef]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.

F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23, 1149–1151 (1998).
[CrossRef]

Lequime, M.

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50, C217–C221 (2011).
[CrossRef]

M. Lequime, “Spectral properties of planar multilayer microcavities,” in Frontiers of Optical Coatings, China, 2009, invited paper.

Lereu, A. L.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

D. Brissinger, A. L. Lereu, L. Salomon, T. Charvolin, B. Cluzel, C. Dumas, A. Passian, and F. de Fornel, “Discontinuity induced angular distribution of photon plasmon coupling,” Opt. Express 19, 17750–17757 (2011).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.

Liscidini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Lourtioz, J.-M.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Maiti, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Mandracci, P.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

Massaneda, J.

Mateescu, A.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

Maure, S.

Maystre, D.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

McGowan, R. W.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

Meriaudeau, F.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

Michelotti, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H.-P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[CrossRef]

Moi, V.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Munzert, P.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Mysore, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Nakagawa, W.

Napione, L.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Narimanov, E. E.

Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect in hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper QWB2.

Ndiaye, C.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
[CrossRef]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.

M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.

C. Ndiaye, “Exaltation optique gante dans les filtres interfrentiels: Modlisation, optimisation et ralisation,” Ph.D. dissertation (École Centrale de Marseille, 2012).

Nesnidal, R. C.

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Pagnoux, D.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Passian, A.

D. Brissinger, A. L. Lereu, L. Salomon, T. Charvolin, B. Cluzel, C. Dumas, A. Passian, and F. de Fornel, “Discontinuity induced angular distribution of photon plasmon coupling,” Opt. Express 19, 17750–17757 (2011).
[CrossRef]

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

Patrini, M.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Pelletier, E.

Pirogov, Y. A.

V. Tikhonravov and Y. A. Pirogov, “Multilayer interference absorber with taking into account of losses in non-working layers,” J. Technicheskoi Fiziki 50, 673–679 (1980) (in Russian).

Y. A. Pirogov and A. V. Tikhonravov, “Multilayer interference absorber with arbitrary thickness of working layer,” Moscow Univ. Phys. Bull 19, 42–48 (1978) (in Russian).

Pirotta, S.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Ricciardi, S.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Rivolo, P.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

Roche, P.

Roche, R.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

Salomon, L.

Sentenac, A.

Sfez, T.

Sipe, J. E.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Skorjanec, J.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

Smolyaninov, I.

Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect in hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper QWB2.

Tchelnokov, A.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Thundat, T.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

Tien, P. K.

Tikhonravov, A. V.

Y. A. Pirogov and A. V. Tikhonravov, “Multilayer interference absorber with arbitrary thickness of working layer,” Moscow Univ. Phys. Bull 19, 42–48 (1978) (in Russian).

Tikhonravov, V.

V. Tikhonravov and Y. A. Pirogov, “Multilayer interference absorber with taking into account of losses in non-working layers,” J. Technicheskoi Fiziki 50, 673–679 (1980) (in Russian).

Toma, K.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

Toma, M.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

Torricini, D.

Treps, N.

F. Brettenaker and N. Treps, Introduction à: Le Laser, Chap. 3, 78–81 (2010).

Ulrich, R.

Vuckovic, J.

Walker, G. C.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Walker, T. G.

Warmack, R. J.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).

Wig, A.

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

Xu, X. G.

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

Yang, Z.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

Zerrad, M.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.

C. Ndiaye, F. Lemarchand, M. Zerrad, D. Ausserr, and C. Amra, “Optimal design for 100% absorption and maximum field enhancement in thin film multilayers at resonances under total reflection,” Appl. Opt. 50, C382–C387 (2011).
[CrossRef]

M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50, C217–C221 (2011).
[CrossRef]

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.

Am. Sci.

T. L. Ferrell, T. A. Callcott, and R. J. Warmack, “Plasmons and surfaces,” Am. Sci. 73, 344–353 (1985).

Appl. Opt.

Appl. Phys. Lett.

C. Ndiaye, M. Zerrad, A. L. Lereu, R. Roche, Ph. Dumas, F. Lemarchand, and C. Amra, “Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy,” Appl. Phys. Lett. 103, 131102 (2013).
[CrossRef]

A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett. 85, 3420–3422 (2004).
[CrossRef]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one dimensional photonic crystal,” Appl. Phys. Lett. 99, 043302 (2011).
[CrossRef]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[CrossRef]

Biosens. Bioelectron.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, and J. Dostalek, “Bloch surface wave-enhanced fluorescence biosensor,” Biosens. Bioelectron. 43, 108–114 (2013).
[CrossRef]

J. Appl. Phys.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Chem. C

S. Pirotta, X. G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J. E. Sipe, G. C. Walker, and M. Liscidini, “Surface-enhanced Raman scattering in purely dielectric structures via Bloch surface waves,” J. Phys. Chem. C 117, 6821–6825 (2013).
[CrossRef]

J. Technicheskoi Fiziki

V. Tikhonravov and Y. A. Pirogov, “Multilayer interference absorber with taking into account of losses in non-working layers,” J. Technicheskoi Fiziki 50, 673–679 (1980) (in Russian).

Moscow Univ. Phys. Bull

Y. A. Pirogov and A. V. Tikhonravov, “Multilayer interference absorber with arbitrary thickness of working layer,” Moscow Univ. Phys. Bull 19, 42–48 (1978) (in Russian).

Opt. Express

Opt. Lett.

Phys. Rev.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Phys. Rev. B

A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunneling,” Phys. Rev. B 71, 165418 (2005).
[CrossRef]

Proc. SPIE

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011), invited paper.

C. Amra, C. Ndiaye, M. Zerrad, and F. Lemarchand, “Optimal design for field enhancement in optical coatings,” Proc. SPIE 8168, 816808 (2011), invited paper.

Sens. Actuators B Chem.

W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec, and Z. Yang, “A multilayer grating-based evanescent wave sensing technique,” Sens. Actuators B Chem. 71, 42–46 (2000).
[CrossRef]

Sensors

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves,” Sensors 13, 2011–2022 (2013).
[CrossRef]

Ultramicroscopy

A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004).
[CrossRef]

Other

F. Brettenaker and N. Treps, Introduction à: Le Laser, Chap. 3, 78–81 (2010).

C. Ndiaye, “Exaltation optique gante dans les filtres interfrentiels: Modlisation, optimisation et ralisation,” Ph.D. dissertation (École Centrale de Marseille, 2012).

M. Zerrad, C. Ndiaye, A. L. Lereu, and C. Amra, “Bandwidths limitations of giant optical field enhancements,” Phys. Rev. B (2014), to be published.

M. Lequime, “Spectral properties of planar multilayer microcavities,” in Frontiers of Optical Coatings, China, 2009, invited paper.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect in hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper QWB2.

J.-M. Lourtioz, H. Benisty, V. Berger, D. Pagnoux, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sample description with a minimum of reflection (R=1A) under resonance conditions (angular i and spectral λ). (a) Gives the proposed design, alternating high (nH, dH) and low (nr, dr) indices media (here, Ta2O5 and SiO2) of λ/4 optical thickness, and terminated by an adaptive and slightly absorbing (n=3.4×104) layers. (b) The electric field distribution is given inside multi-dielectric stacks of 10, 19, and 24 layers designed to achieve 100% of absorption. For the 10 layers case, we also show the stack response off resonance where no field enhancement is evidenced. The off resonance case was obtained using an excitation wavelength of 635 nm instead of 633 nm for the resonant cases. Field enhancement up to 10° is predicted in the absence of damage or nonlinear effects.

Fig. 2.
Fig. 2.

Near field measurements using a photon scanning tunneling microscope (PSTM). As described by the respective insets, (a) is for the resonance case above the stack and (b) is for the reference measurement above the prism only without changing the illumination conditions. A 633 nm TE-polarized laser line was used here. The z distance (i.e., probe-sample distance) was controlled by shear force feedback, where the contact position was considered to be the plane z=0.

Fig. 3.
Fig. 3.

Scattering characterization evidencing the reflected beam at the 0° angular position and the scattering from the stack side. We used the bidirectional reflectance distribution function (BRDF) to define the reflected light of the sample surface as a function of the detection angular position. (a) Image of the reflected beam at resonance, which highlights a bright spot and a light cone, and out of resonance in the inset. (b) and (c) Zoom of (a) of the back scattering from the prism showing a large increase of the scattering effect at the resonance (b) as confirmed on the continuous curve (at resonance) with respect to the dashed curve (off resonance). Each image is marked on the scattering graph by their respective letters. The observed scattering peaks are due to the light scattered by the corner of the prism (45), scattering in the direction of incident beam (70), and residual scattering at different interfaces. The detection limit was measured to be at least two decades below the actual signals (black curve composed of plus symbols). (d) Angular position with respect to the prism and the reflected beam (i.e., 0° angular position).

Metrics