Abstract

Ion beam sputtering is one of the most important technologies for preparing hafnium dioxide thin films. In this paper, the correlation between properties of hafnium dioxide thin films and preparing parameters was systematically researched by using the orthogonal experiment design method. The properties of hafnium oxide films (refractive index, extinction coefficient, deposition rate, stress, and inhomogeneity of refractive index) were studied. The refractive index, extinction coefficient, physical thickness, and inhomogeneity of refractive index were obtained by the multiple wavelength curve-fitting method from the reflectance and transmittance of single layers. The stress of thin film was measured by elastic deformation of the thin film–substrate system. An orthogonal experimental strategy was designed using substrate temperature, ion beam voltage, ion beam current, and oxygen flow rate as the variables. The experimental results indicated that the temperature of the substrate is the key influencing parameter on the properties of hafnium oxide films, while other preparing parameters are also correlated with specific properties. The experimental results are significant for selecting proper parameters for preparing hafnium oxide films with different applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering

Cheng-Chung Lee, Chuen-Lin Tien, and Jin-Cherng Hsu
Appl. Opt. 41(10) 2043-2047 (2002)

Ultra-low stress SiO2 coatings by ion beam sputtering deposition

Aaron Davenport, Emmett Randel, and Carmen S. Menoni
Appl. Opt. 59(7) 1871-1875 (2020)

Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties

Martin Bischoff, Tobias Nowitzki, Oliver Voß, Steffen Wilbrandt, and Olaf Stenzel
Appl. Opt. 53(4) A212-A220 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription