Abstract

The structural color found in biological systems has complicated nanostructure. It is very important to determine its color mechanism. In this study, the 2D photonic crystal structures of the Papilio blumei butterfly were constructed, and the corresponding reflectance spectra were simulated by the finite-difference time-domain method. The structural color of the butterfly depends on the incident angle of light, film thickness, film material (film refractive index), and the size of the air hole (effective refractive index). Analysis of simulations can help us understand the hue, brightness, and saturation of structural color on the butterfly wing. As a result, the analysis can help us fabricate expected structural color.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
    [CrossRef]
  2. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008), Chaps. 3 and 4.
  3. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
    [CrossRef]
  4. P. Vukusic and J. Roy Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [CrossRef]
  5. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
    [CrossRef]
  6. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
    [CrossRef]
  7. L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D 35, 267–271 (2002).
    [CrossRef]
  8. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. Chem. 6, 1442–1459 (2005).
    [CrossRef]
  9. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), Chap. 3.
  10. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC, 2010), Chap. 6.

2009 (1)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[CrossRef]

2008 (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

2005 (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. Chem. 6, 1442–1459 (2005).
[CrossRef]

2003 (1)

P. Vukusic and J. Roy Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

2002 (1)

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D 35, 267–271 (2002).
[CrossRef]

1999 (2)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[CrossRef]

Gao, L.

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D 35, 267–271 (2002).
[CrossRef]

Gu, J. Z.

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D 35, 267–271 (2002).
[CrossRef]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. Chem. 6, 1442–1459 (2005).
[CrossRef]

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008), Chaps. 3 and 4.

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC, 2010), Chap. 6.

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[CrossRef]

Roy Sambles, J.

P. Vukusic and J. Roy Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[CrossRef]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[CrossRef]

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), Chap. 3.

Vukusic, P.

P. Vukusic and J. Roy Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), Chap. 3.

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. Chem. 6, 1442–1459 (2005).
[CrossRef]

Chem. Phys. Chem. (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. Chem. 6, 1442–1459 (2005).
[CrossRef]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

J. Phys. D (1)

L. Gao and J. Z. Gu, “Effective dielectric constant of a two-component material with shape distribution,” J. Phys. D 35, 267–271 (2002).
[CrossRef]

Nature (1)

P. Vukusic and J. Roy Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef]

Proc. R. Soc. London Ser. B (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. London Ser. B 266, 1403–1411 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Science (1)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[CrossRef]

Other (3)

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008), Chaps. 3 and 4.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), Chap. 3.

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC, 2010), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-sectional SEM images of (a) the green band and (b) the cyan tail of the Papilio blumei butterfly wing’s cover scale. Models of the Papilio blumei butterfly wing’s cover scale for (c) the 2D photonic crystal and (d) the equivalent 1D multilayer.

Fig. 2.
Fig. 2.

(a) Reflectance spectra of the green band of the natural Papilio blumei butterfly and the simulation model. (b) The reflectance spectra of the 2D chitin-air layer and the 1D equivalent multilayer.

Fig. 3.
Fig. 3.

Reflectance spectra of the green band for (a) the natural Papilio blumei butterfly and (b) the corresponding simulation results.

Fig. 4.
Fig. 4.

Simulated reflectance spectra of different (a) chitin-air layer thicknesses and (b) air hole widths for the 2D photonic crystal model of the Papilio blumei butterfly scales.

Fig. 5.
Fig. 5.

CIE 1931 xy chromaticity diagram presenting the color of the 2D photonic crystal model with different air hole widths.

Tables (1)

Tables Icon

Table 1. Photonic Crystal Parameters of the Papilio blumei Butterfly’s Structure

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

0=faεaεeεa+εe+fcεcεeεc+2εe,
λp=2(ncdc+nede).
X=k400nm800nmD65(λ)R(λ)x¯(λ)dλ,Y=k400nm800nmD65(λ)R(λ)y¯(λ)dλ,Z=k400nm800nmD65(λ)R(λ)z¯(λ)dλ,
x=XX+Y+Z,y=YX+Y+Z.
R=|1(nHnL)2p(nH2nS)1+(nHnL)2p(nH2nS)|2.
R14(nLnH)2p(nSnH2)=14(nenc)2p(nSnc2),
2Δg=4πsin1(nHnLnH+nL)=4πsin1(ncnenc+ne).

Metrics