Abstract

The laser-induced damage of mixtures of Sc2O3, HfO2, Al2O3 with SiO2 has been characterized in the infrared for both nanosecond and subpicosecond pulses. Laser-induced damage thresholds (LIDTs) are reported and discussed versus band gap for different compositions. The distributions versus fluence of nanosecond damage precursor densities are extracted fitting damage probability curves. Two models are used: first, a statistical approach, i.e., direct calculation of damage precursor density from damage probability, and second a thermal model based on absorption of initiator. The results show a good agreement. The nature, shape, and size of these precursors are discussed. The critical temperature in the thermal model is dependent on the band gap energy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Jensen and D. Ristau, “Coatings of oxide composites,” Proc. SPIE 8530, 853013 (2012).
    [CrossRef]
  2. C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
    [CrossRef]
  3. M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008).
    [CrossRef]
  4. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
    [CrossRef]
  5. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351  nm, 3  ns laser pulses at high fluences (20–150  J/cm2),” Opt. Express 20, 11561 (2012).
    [CrossRef]
  6. X. Fu, A. Melnikaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20, 26089–26098 (2012).
    [CrossRef]
  7. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
    [CrossRef]
  8. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
  9. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
    [CrossRef]
  10. M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52, 1368–1376 (2013).
    [CrossRef]
  11. M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).
  12. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
    [CrossRef]
  13. L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
    [CrossRef]
  14. X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
    [CrossRef]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef]
  16. G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011).
    [CrossRef]

2013

2012

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
[CrossRef]

X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
[CrossRef]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351  nm, 3  ns laser pulses at high fluences (20–150  J/cm2),” Opt. Express 20, 11561 (2012).
[CrossRef]

X. Fu, A. Melnikaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20, 26089–26098 (2012).
[CrossRef]

L. Jensen and D. Ristau, “Coatings of oxide composites,” Proc. SPIE 8530, 853013 (2012).
[CrossRef]

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

2011

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011).
[CrossRef]

2009

L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[CrossRef]

2008

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008).
[CrossRef]

2007

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

2004

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Balasa, I.

M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

Blaaschke, H.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[CrossRef]

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Bude, J. D.

Capoulade, J.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Commandre, M.

M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).

Commandré, M.

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
[CrossRef]

X. Fu, A. Melnikaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20, 26089–26098 (2012).
[CrossRef]

X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
[CrossRef]

G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011).
[CrossRef]

M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008).
[CrossRef]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Demésy, G.

G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011).
[CrossRef]

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Douti, D.-B.

M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).

Drazdys, R.

Ehlers, H.

Emmert, L.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Feit, M. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351  nm, 3  ns laser pulses at high fluences (20–150  J/cm2),” Opt. Express 20, 11561 (2012).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Fejer, M. M.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Fu, X.

X. Fu, A. Melnikaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20, 26089–26098 (2012).
[CrossRef]

X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
[CrossRef]

Gallais, L.

M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52, 1368–1376 (2013).
[CrossRef]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
[CrossRef]

X. Fu, A. Melnikaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Investigation of the distribution of laser damage precursors at 1064  nm, 12  ns on Niobia-Silica and Zirconia-Silica mixtures,” Opt. Express 20, 26089–26098 (2012).
[CrossRef]

X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
[CrossRef]

G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011).
[CrossRef]

M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008).
[CrossRef]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).

Jensen, L.

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
[CrossRef]

L. Jensen and D. Ristau, “Coatings of oxide composites,” Proc. SPIE 8530, 853013 (2012).
[CrossRef]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[CrossRef]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Jupé, M.

Kicas, S.

Krous, E.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Langston, P. F.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Laurence, T. A.

Ly, S.

Mangote, B.

Markosyan, A.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Melnikaitis, A.

Melninkaitis, A.

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
[CrossRef]

X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
[CrossRef]

Mende, M.

Menoni, C. S.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Mirauskas, J.

Natoli, J. Y.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

Natoli, J.-Y.

M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008).
[CrossRef]

Oliver, J. B.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

Papernov, S.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

Patel, D.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Poncetta, J. C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Reagan, B.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Ristau, D.

M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52, 1368–1376 (2013).
[CrossRef]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, and R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37, 1478–1480 (2012).
[CrossRef]

L. Jensen and D. Ristau, “Coatings of oxide composites,” Proc. SPIE 8530, 853013 (2012).
[CrossRef]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[CrossRef]

M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).

Rocca, J. J.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Route, R.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Rudolph, W.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Schmid, A. W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

Schrameyer, S.

M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, and L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52, 1368–1376 (2013).
[CrossRef]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[CrossRef]

Shen, N.

Sirutkaitis, V.

Sun, Z.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

Tolenis, T.

Wernsing, K.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Xu, Y.

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Appl. Opt.

Eur. Phys. J. Special Topics

M. Commandré, J.-Y. Natoli, and L. Gallais, “Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials,” Eur. Phys. J. Special Topics 153, 59–64 (2008).
[CrossRef]

J. Appl. Phys.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109, 113106 (2011).
[CrossRef]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

J. Eur. Opt. Soc.

G. Demésy, L. Gallais, and M. Commandré, “Tridimensional multiphysics model for the study of photo-induced thermal effects in arbitrary nano-structures,” J. Eur. Opt. Soc. 6, 11037 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Proc. of SPIE

X. Fu, A. Melninkaitis, L. Gallais, S. Kičas, R. Drazdys, V. Sirutkaitis, and M. Commandré, “Measured nanosecond laser damage probabilities of Niobia-Silica and Zirconia-Silica mixtures coatings,” Proc. of SPIE 8530, 85300X (2012).
[CrossRef]

Proc. SPIE

L. Jensen, S. Schrameyer, M. Jupé, H. Blaaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).

L. Jensen and D. Ristau, “Coatings of oxide composites,” Proc. SPIE 8530, 853013 (2012).
[CrossRef]

C. S. Menoni, P. F. Langston, E. Krous, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, R. Route, M. M. Fejer, J. J. Rocca, and W. Rudolph, “What role do point defects play in the laser damage behavior of metal oxides?,” Proc. SPIE 8530, 85300J (2012).
[CrossRef]

Rev. Sci. Instrum.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Other

M. Mende, I. Balasa, H. Ehlers, D. Ristau, D.-B. Douti, L. Gallais, and M. Commandre, “Correlation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings,” Appl. Opt.53 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Refractive index versus wavelength for scandium silicon oxide composites.

Fig. 2.
Fig. 2.

Band gap energy versus atomic fraction of scandium for scandium silicon oxide composites.

Fig. 3.
Fig. 3.

Experimental set-up for laser-damage measurements at 12 ns, 1064 nm. Sh, mechanical shutter; W, half-wave plate; P, glan laser polarizer; BS, wedged beam splitter; ND, set of multidieletric neutral density filters; L, focusing lens; Py, pyroelectric detector; Ca, calorimeter; S, sample; BD, beam dump; IS, imaging system; BP, beam profiler.

Fig. 4.
Fig. 4.

Summary of the LIDT values measured on thin films of mixtures of Sc2O3, HfO2, Al2O3 with SiO2 at 1030 nm, 510 fs, 1 on 1, and plotted as a function of the band gap.

Fig. 5.
Fig. 5.

LIDT versus band gap at 1064 nm, 12 ns, 1 on 1 in scandium silicon oxide mixtures with the increased part of SiO2 (Si atomic fraction of Si+Sc is given) and related evolution of damage morphologies (Nomarski microscopy NM).

Fig. 6.
Fig. 6.

LIDT versus band gap at 1064 nm, 12 ns, 1 on 1 in hafnium silicon oxide mixtures with the increased part of SiO2 (the volumetric fraction is given) and related evolution of damage morphologies (NM).

Fig. 7.
Fig. 7.

LIDT versus band gap at 1064 nm, 12 ns, 1 on 1 in aluminum silicon oxide mixtures with the increased part of SiO2 (the volumetric fraction is given) and related evolution of damage morphologies (NM).

Fig. 8.
Fig. 8.

(a) Damage probability curves for scandium silicon oxide mixtures of different compositions (1064 nm, 12 ns, 1 on 1) (beam diameter 50 μm) and (b) corresponding distributions of damage precursor density versus fluence extracted from the fittings by the two models: statistical approach (dot line) and thermal model (solid line).

Fig. 9.
Fig. 9.

Distributions of damage precursor density versus fluence extracted from the fittings of damage probability curves by the two models for hafnium silicon oxide mixtures (a) and for aluminum silicon oxide mixtures (b). Statistical approach (dot line) and thermal model (solid line).

Fig. 10.
Fig. 10.

Critical temperatures obtained by fitting probability curves with the thermal model and comparison with measured plasma temperatures from [15] and previous results on niobia silica and zirconia silica composite films [6].

Fig. 11.
Fig. 11.

Calculation of the absorptivity and maximum temperature for anisotropic defects for two different orientations: (a) the electric field is normal to the major axis of the ellipsoidal defect, (b) the electric field is parallel to the major axis of the ellipsoidal defect. The defects B and E have the same volume but because of the plasmonic resonance, the absorptivity of E is 0.7 while that of B is 0.02.

Tables (1)

Tables Icon

Table 1. Nature and Size of Precursors Obtained for Different Mixtures by Fitting Damage Probability Curves

Metrics