Abstract

Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400–700 nm, and all the extinction coefficients are smaller than 1×104. The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Lett. 37, 4200–4202 (2012).
    [CrossRef]
  2. S.-L. Ku and C.-C. Lee, “Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition,” Opt. Mater. 32, 956–960 (2010).
    [CrossRef]
  3. S.-L. Ku and C.-C. Lee, “Surface characterization and properties of silicon nitride films prepared by ion-assisted deposition,” Surf. Coat. Technol. 204, 3234–3237 (2010).
    [CrossRef]
  4. J. Weber, H. Bartzsch, and P. Frach, “Sputter deposition of silicon oxynitride gradient and multilayer coatings,” Appl. Opt. 47, C288–C292 (2008).
    [CrossRef]
  5. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
    [CrossRef]
  6. C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
    [CrossRef]
  7. M. F. Lambrinos, R. Valizadeh, and J. S. Colligon, “Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering,” Appl. Opt. 35, 3620–3626 (1996).
    [CrossRef]
  8. K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: a review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 1661–1684 (2010).
    [CrossRef]
  9. S. Konstantinidis, J. P. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515, 1182–1186 (2006).
    [CrossRef]
  10. C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
    [CrossRef]
  11. I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterization parameters for unbalanced magnetron sputtering systems,” Vacuum 68, 283–290 (2002).
    [CrossRef]
  12. J. J. Olaya, S. E. Rodil, and S. Muhl, “Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films 516, 8319–8326 (2008).
    [CrossRef]
  13. P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56, 159–172 (2000).
    [CrossRef]
  14. Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, “Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A 26, 288–296, (2008).
    [CrossRef]
  15. J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
    [CrossRef]
  16. P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
    [CrossRef]
  17. P. E. Hovsepian, C. Reinhard, and A. P. Ehiasarian, “CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 201, 4105–4110 (2006).
    [CrossRef]
  18. P. E. Hovsepian, A. P. Ehiasarian, and U. Ratayski, “CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Surf. Coat. Technol. 203, 1237–1243 (2009).
    [CrossRef]
  19. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
    [CrossRef]
  20. M. F. Lambrinos, R. Valizadeh, and J. S. Colligon Journal, “Ionization-assisted evaporative processes: techniques and film properties,” Appl. Opt. 35, 3620–3626 (1996).
    [CrossRef]
  21. S. K. Ghosh and T. K. Hatwar, “Preparation and characterization of reactively sputtered silicon nitride thin films,” Thin Solid Films 166, 359–366 (1988).
    [CrossRef]

2012 (2)

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Lett. 37, 4200–4202 (2012).
[CrossRef]

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

2010 (4)

S.-L. Ku and C.-C. Lee, “Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition,” Opt. Mater. 32, 956–960 (2010).
[CrossRef]

S.-L. Ku and C.-C. Lee, “Surface characterization and properties of silicon nitride films prepared by ion-assisted deposition,” Surf. Coat. Technol. 204, 3234–3237 (2010).
[CrossRef]

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: a review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 1661–1684 (2010).
[CrossRef]

2009 (1)

P. E. Hovsepian, A. P. Ehiasarian, and U. Ratayski, “CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Surf. Coat. Technol. 203, 1237–1243 (2009).
[CrossRef]

2008 (6)

J. Weber, H. Bartzsch, and P. Frach, “Sputter deposition of silicon oxynitride gradient and multilayer coatings,” Appl. Opt. 47, C288–C292 (2008).
[CrossRef]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
[CrossRef]

J. J. Olaya, S. E. Rodil, and S. Muhl, “Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films 516, 8319–8326 (2008).
[CrossRef]

Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, “Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A 26, 288–296, (2008).
[CrossRef]

J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
[CrossRef]

P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
[CrossRef]

2006 (2)

P. E. Hovsepian, C. Reinhard, and A. P. Ehiasarian, “CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 201, 4105–4110 (2006).
[CrossRef]

S. Konstantinidis, J. P. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515, 1182–1186 (2006).
[CrossRef]

2002 (1)

I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterization parameters for unbalanced magnetron sputtering systems,” Vacuum 68, 283–290 (2002).
[CrossRef]

2000 (1)

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56, 159–172 (2000).
[CrossRef]

1996 (2)

1988 (1)

S. K. Ghosh and T. K. Hatwar, “Preparation and characterization of reactively sputtered silicon nitride thin films,” Thin Solid Films 166, 359–366 (1988).
[CrossRef]

1976 (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Aimez, V.

Alami, J.

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: a review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 1661–1684 (2010).
[CrossRef]

Archambeau, C.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Arnell, R. D.

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56, 159–172 (2000).
[CrossRef]

Bartzsch, H.

Beall, J. A.

Cataldo, G.

Charette, P.

Chen, H. C.

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

Cho, H.-M.

Cloots, R.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Colligon, J. S.

Colligon Journal, J. S.

Dauchot, J. P.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

S. Konstantinidis, J. P. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515, 1182–1186 (2006).
[CrossRef]

Deeming, A.

P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
[CrossRef]

Delvaux, S.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Ehiasarian, A. P.

P. E. Hovsepian, A. P. Ehiasarian, and U. Ratayski, “CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Surf. Coat. Technol. 203, 1237–1243 (2009).
[CrossRef]

P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
[CrossRef]

Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, “Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A 26, 288–296, (2008).
[CrossRef]

P. E. Hovsepian, C. Reinhard, and A. P. Ehiasarian, “CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 201, 4105–4110 (2006).
[CrossRef]

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Frach, P.

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Ghosh, S. K.

S. K. Ghosh and T. K. Hatwar, “Preparation and characterization of reactively sputtered silicon nitride thin films,” Thin Solid Films 166, 359–366 (1988).
[CrossRef]

Golosov, D. A.

I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterization parameters for unbalanced magnetron sputtering systems,” Vacuum 68, 283–290 (2002).
[CrossRef]

Gorin, A.

Grondin, E.

Hatwar, T. K.

S. K. Ghosh and T. K. Hatwar, “Preparation and characterization of reactively sputtered silicon nitride thin films,” Thin Solid Films 166, 359–366 (1988).
[CrossRef]

Hecq, M.

S. Konstantinidis, J. P. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515, 1182–1186 (2006).
[CrossRef]

Hovsepian, P. E.

P. E. Hovsepian, A. P. Ehiasarian, and U. Ratayski, “CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Surf. Coat. Technol. 203, 1237–1243 (2009).
[CrossRef]

P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
[CrossRef]

Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, “Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A 26, 288–296, (2008).
[CrossRef]

P. E. Hovsepian, C. Reinhard, and A. P. Ehiasarian, “CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 201, 4105–4110 (2006).
[CrossRef]

Jaing, C. C.

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

Jaouad, A.

Kelly, P. J.

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56, 159–172 (2000).
[CrossRef]

Konstantinidis, S.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: a review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 1661–1684 (2010).
[CrossRef]

S. Konstantinidis, J. P. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515, 1182–1186 (2006).
[CrossRef]

Ku, S.-L.

S.-L. Ku and C.-C. Lee, “Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition,” Opt. Mater. 32, 956–960 (2010).
[CrossRef]

S.-L. Ku and C.-C. Lee, “Surface characterization and properties of silicon nitride films prepared by ion-assisted deposition,” Surf. Coat. Technol. 204, 3234–3237 (2010).
[CrossRef]

Laffineur, F.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Lambrinos, M. F.

Lee, C. C.

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

Lee, C.-C.

S.-L. Ku and C.-C. Lee, “Surface characterization and properties of silicon nitride films prepared by ion-assisted deposition,” Surf. Coat. Technol. 204, 3234–3237 (2010).
[CrossRef]

S.-L. Ku and C.-C. Lee, “Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition,” Opt. Mater. 32, 956–960 (2010).
[CrossRef]

Lee, K. H.

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Mayrhofer, P. H.

J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
[CrossRef]

McAndrew, B.

Michiels, M.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Muhl, S.

J. J. Olaya, S. E. Rodil, and S. Muhl, “Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films 516, 8319–8326 (2008).
[CrossRef]

Münz, W.-D.

J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
[CrossRef]

Niemack, M. D.

Nouvellon, C.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Olaya, J. J.

J. J. Olaya, S. E. Rodil, and S. Muhl, “Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films 516, 8319–8326 (2008).
[CrossRef]

Paulitsch, J.

J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
[CrossRef]

Purandare, Y. P.

Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, “Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A 26, 288–296, (2008).
[CrossRef]

Ratayski, U.

P. E. Hovsepian, A. P. Ehiasarian, and U. Ratayski, “CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Surf. Coat. Technol. 203, 1237–1243 (2009).
[CrossRef]

Reinhard, C.

P. E. Hovsepian, C. Reinhard, and A. P. Ehiasarian, “CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 201, 4105–4110 (2006).
[CrossRef]

Rodil, S. E.

J. J. Olaya, S. E. Rodil, and S. Muhl, “Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films 516, 8319–8326 (2008).
[CrossRef]

Sarakinos, K.

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: a review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 1661–1684 (2010).
[CrossRef]

Schenkel, M.

J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
[CrossRef]

Schimpf, C.

P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
[CrossRef]

Silberberg, E.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Snyders, R.

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

Svadkovski, I. V.

I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterization parameters for unbalanced magnetron sputtering systems,” Vacuum 68, 283–290 (2002).
[CrossRef]

Tang, C. J.

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

Valizadeh, R.

Weber, J.

Wollack, E. J.

Zavatskiy, S. M.

I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterization parameters for unbalanced magnetron sputtering systems,” Vacuum 68, 283–290 (2002).
[CrossRef]

Appl. Opt. (3)

J. Phys. E (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

J. Vac. Sci. Technol. A (1)

Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, “Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A 26, 288–296, (2008).
[CrossRef]

Opt. Eng. (1)

C. C. Lee, K. H. Lee, C. J. Tang, C. C. Jaing, and H. C. Chen, “Reduction of residual stress in optical silicon nitride thin films prepared by radio-frequency ion beam sputtering deposition,” Opt. Eng. 49, 063802 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

S.-L. Ku and C.-C. Lee, “Optical and structural properties of silicon nitride thin films prepared by ion-assisted deposition,” Opt. Mater. 32, 956–960 (2010).
[CrossRef]

Surf. Coat. Technol. (5)

S.-L. Ku and C.-C. Lee, “Surface characterization and properties of silicon nitride films prepared by ion-assisted deposition,” Surf. Coat. Technol. 204, 3234–3237 (2010).
[CrossRef]

K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: a review on scientific and engineering state of the art,” Surf. Coat. Technol. 204, 1661–1684 (2010).
[CrossRef]

C. Nouvellon, M. Michiels, J. P. Dauchot, C. Archambeau, F. Laffineur, E. Silberberg, S. Delvaux, R. Cloots, S. Konstantinidis, and R. Snyders, “Deposition of titanium oxide films by reactive high power impulse magnetron sputtering (HiPIMS): influence of the peak current value on the transition from metallic to poisoned regimes,” Surf. Coat. Technol. 206, 3542–3549 (2012).
[CrossRef]

P. E. Hovsepian, C. Reinhard, and A. P. Ehiasarian, “CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique,” Surf. Coat. Technol. 201, 4105–4110 (2006).
[CrossRef]

P. E. Hovsepian, A. P. Ehiasarian, and U. Ratayski, “CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Surf. Coat. Technol. 203, 1237–1243 (2009).
[CrossRef]

Thin Solid Films (4)

J. Paulitsch, P. H. Mayrhofer, W.-D. Münz, and M. Schenkel, “Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique,” Thin Solid Films 517, 1239–1244 (2008).
[CrossRef]

J. J. Olaya, S. E. Rodil, and S. Muhl, “Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films 516, 8319–8326 (2008).
[CrossRef]

S. Konstantinidis, J. P. Dauchot, and M. Hecq, “Titanium oxide thin films deposited by high-power impulse magnetron sputtering,” Thin Solid Films 515, 1182–1186 (2006).
[CrossRef]

S. K. Ghosh and T. K. Hatwar, “Preparation and characterization of reactively sputtered silicon nitride thin films,” Thin Solid Films 166, 359–366 (1988).
[CrossRef]

Vacuum (3)

I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, “Characterization parameters for unbalanced magnetron sputtering systems,” Vacuum 68, 283–290 (2002).
[CrossRef]

P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56, 159–172 (2000).
[CrossRef]

P. E. Hovsepian, A. P. Ehiasarian, A. Deeming, and C. Schimpf, “Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology,” Vacuum 82, 1312–1317 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of the cosputtering system.

Fig. 2.
Fig. 2.

Transmittance spectra of Si3N4 films deposited with various unbalanced coefficients.

Fig. 3.
Fig. 3.

Extinction coefficients of the Si3N4 films deposited with various unbalanced coefficients.

Fig. 4.
Fig. 4.

Transmittance spectra of Si3N4 films deposited with various on/off times and an unbalanced coefficient of 0.83.

Fig. 5.
Fig. 5.

Refractive indices of Si3N4 films deposited with different techniques.

Fig. 6.
Fig. 6.

Transmittance spectrum of Si3N4 films in the MIR range deposited by the combined HIPIMS/UBMS deposition technique.

Fig. 7.
Fig. 7.

Refractive indices of Si3N4 films in the MIR range deposited by the combined HIPIMS/UBMS deposition technique.

Fig. 8.
Fig. 8.

X-ray diffraction pattern of a Si3N4 film deposited on a glass substrate by the combined HIPIMS/UBMS deposition technique.

Fig. 9.
Fig. 9.

Cross-sectional morphology of Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique.

Fig. 10.
Fig. 10.

Transmittance spectrum using an AR coating on both sides of a polished Si substrate.

Tables (1)

Tables Icon

Table 1. Refractive Indices and Extinction Coefficients of Si3N4 Films Deposited with Different Techniques

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G=Z0/(2R),

Metrics