Abstract

The light scattering of interference coatings is strongly dependent on the wavelength. In addition to the general strong increase of scattering as the wavelengths get shorter, dramatic scatter effects in and around the resonance regions can occur. This is discussed in detail for highly reflective and chirped mirrors. A new instrument is presented which enables spectral angle resolved scatter measurements of high-quality optical components to be performed between 250 and 1500 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
    [CrossRef]
  2. S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
    [CrossRef]
  3. E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979).
    [CrossRef]
  4. J. C. Stover, Optical Scattering—Measurement and Analysis, 3rd ed. (SPIE, 2012).
  5. J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
    [CrossRef]
  6. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
    [CrossRef]
  7. P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981).
    [CrossRef]
  8. C. Amra, “Light scattering from multilayer optics. I. Tools of investigation,” J. Opt. Soc. Am. A 11, 197–210 (1994).
    [CrossRef]
  9. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50, C164–C171 (2011).
    [CrossRef]
  10. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219 (1983).
    [CrossRef]
  11. A. V. Tikhonravov and M. K. Trubetskov, Optilayer Thin Film Software, http://www.optilayer.com .
  12. C. Amra, “Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226 (1994).
    [CrossRef]
  13. S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012).
    [CrossRef]
  14. T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52, 3279–3287 (2013).
    [CrossRef]
  15. M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153 (2011).
    [CrossRef]
  16. M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
    [CrossRef]
  17. M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011).
    [CrossRef]

2013

2012

S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012).
[CrossRef]

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[CrossRef]

2011

2010

2005

S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
[CrossRef]

M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
[CrossRef]

1994

1983

1981

1980

1979

E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979).
[CrossRef]

Amra, C.

Bennett, J. M.

Blaschke, H.

Bousquet, P.

Choi, N.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[CrossRef]

Church, E. L.

E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979).
[CrossRef]

Duparré, A.

T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52, 3279–3287 (2013).
[CrossRef]

S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012).
[CrossRef]

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[CrossRef]

S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50, C164–C171 (2011).
[CrossRef]

M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153 (2011).
[CrossRef]

S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
[CrossRef]

S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
[CrossRef]

Elson, J. M.

Feigl, T.

Flory, F.

Gliech, S.

Grilli, M. L.

M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
[CrossRef]

Harvey, J. E.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[CrossRef]

Herffurth, T.

Jenkinson, H. A.

E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979).
[CrossRef]

Krasilnikova, A.

M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
[CrossRef]

Lequime, M.

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011).
[CrossRef]

Menchini, F.

M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
[CrossRef]

Piegari, A.

M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
[CrossRef]

Rahn, J. P.

Roche, P.

Schröder, S.

T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52, 3279–3287 (2013).
[CrossRef]

S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012).
[CrossRef]

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[CrossRef]

S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50, C164–C171 (2011).
[CrossRef]

M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153 (2011).
[CrossRef]

S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
[CrossRef]

S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
[CrossRef]

Stover, J. C.

J. C. Stover, Optical Scattering—Measurement and Analysis, 3rd ed. (SPIE, 2012).

Trost, M.

Tünnermann, A.

von Finck, A.

S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012).
[CrossRef]

Zavada, J. M.

E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979).
[CrossRef]

Zerrad, M.

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011).
[CrossRef]

Appl. Opt.

S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
[CrossRef]

S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
[CrossRef]

J. M. Elson, J. P. Rahn, and J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
[CrossRef]

S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50, C164–C171 (2011).
[CrossRef]

J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219 (1983).
[CrossRef]

T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52, 3279–3287 (2013).
[CrossRef]

M. Trost, S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153 (2011).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng. 51, 013402 (2012).
[CrossRef]

E. L. Church, H. A. Jenkinson, and J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 182125 (1979).
[CrossRef]

Proc. SPIE

S. Schröder, M. Trost, T. Herffurth, A. von Finck, and A. Duparré, “Sophisticated light scattering techniques from the VUV to the IR regions,” Proc. SPIE 8495, 84950V (2012).
[CrossRef]

M. L. Grilli, A. Krasilnikova, F. Menchini, and A. Piegari, “Spectral characterization of scattering losses in r. f. sputtered oxide coatings,” Proc. SPIE 5965, 59651U (2005).
[CrossRef]

M. Zerrad, M. Lequime, and C. Amra, “Multimodal scattering facilities and modelization tools for a comprehensive investigation of optical coatings,” Proc. SPIE 8169, 81690K (2011).
[CrossRef]

Other

J. C. Stover, Optical Scattering—Measurement and Analysis, 3rd ed. (SPIE, 2012).

A. V. Tikhonravov and M. K. Trubetskov, Optilayer Thin Film Software, http://www.optilayer.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

ARS at 193 nm of highly reflective coating and single surface with same roughness.

Fig. 2.
Fig. 2.

Wavelength dependence of the TS (scatter loss) normalized to the specular reflectance of a single surface and a highly reflective coating for 193 nm.

Fig. 3.
Fig. 3.

Left: ARS of HR coating for 193 nm as a function of incident wavelength. Right: standing field distribution (a.u.) inside the coating on the same wavelength scale.

Fig. 4.
Fig. 4.

Spectral ARS of chirped mirrors compared to nondispersive stack.

Fig. 5.
Fig. 5.

Spectral TS of chirped mirrors compared to nondispersive stack and single surface reflectors assuming fully correlated interface roughness.

Fig. 6.
Fig. 6.

Same as Fig. 5 but assuming fully uncorrelated interface roughness.

Fig. 7.
Fig. 7.

Spectral TS of broadband highly reflective mirrors with different standing field distributions and assuming fully correlated interface roughness.

Fig. 8.
Fig. 8.

Correlation of spectral TS and electric field strength of HR coating.

Fig. 9.
Fig. 9.

New instrument for spectral angle resolved light scattering measurements (schematic).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ARS(θs)=ΔPs(θs)ΔΩsPi=16π2λ4cosθicos2θsQ·PSD(f).
TS=PsPi=2π2°85°ARSsinθsdθs.
TSb=PsPi=R(4πσrelλ)2.
ARS(θs)16π2λ4i=0Nj=0NFiFj*PSDij(f).

Metrics