Abstract

Optical materials and coatings are exposed to the flux of energetic particles when used in either space applications or nuclear energy plants. The study of their behavior in such an environment is important to avoid failure of the optical components during their operation. The optical performance of several thin-film materials (HfO2, Ta2O5, Nb2O5, TiO2, SiO2) and coatings, under irradiation with high-dose gamma rays (5.8 MGy) and exposure to low-energy (60 keV) protons, has been investigated. Some variations of optical properties have been detected in silicon oxide after irradiation, while the other materials are stable in such conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
    [CrossRef]
  2. M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
    [CrossRef]
  3. M. G. Pelizzo, A. J. Corso, P. Zuppella, D. L. Windt, G. Mattei, and P. Nicolosi, “Stability of extreme ultraviolet multilayer coatings to low energy proton bombardment,” Opt. Express 19, 14838–14844 (2011).
    [CrossRef]
  4. A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
    [CrossRef]
  5. H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
    [CrossRef]
  6. Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
    [CrossRef]
  7. CALLIOPE irradiation plant at ENEA, www.enea.it .
  8. INFN—LNS accelerators, www.lns.infn.it .
  9. Rudjer Boskovic Institute, www.irb.hr/en/str/zef/z3labs/liis .
  10. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
    [CrossRef]
  11. E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
    [CrossRef]
  12. J. F. Ziegler and J. P. Biersack, www.srim.org .

2011 (4)

M. G. Pelizzo, A. J. Corso, P. Zuppella, D. L. Windt, G. Mattei, and P. Nicolosi, “Stability of extreme ultraviolet multilayer coatings to low energy proton bombardment,” Opt. Express 19, 14838–14844 (2011).
[CrossRef]

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
[CrossRef]

2005 (1)

S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
[CrossRef]

2004 (1)

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

2002 (1)

E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
[CrossRef]

1998 (1)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

Alvarado, C. G.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Alvarez-Herrero, A.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Baccaro, S.

S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
[CrossRef]

Cecilia, A.

S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
[CrossRef]

Colby, E.

E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
[CrossRef]

Corso, A. J.

del Monte, F.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Di Sarcina, I.

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
[CrossRef]

Dong, S.

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Fernandez-Rodriguez, M.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Grilli, M. L.

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

He, S.

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Hillrichs, G.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

Karlitschek, P.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

Klein, K.-F.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

Levy, D.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Liu, G.

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Liu, H.

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
[CrossRef]

Liu, S.

Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
[CrossRef]

Lum, G.

E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
[CrossRef]

Mattei, G.

Menchini, F.

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

Nicolosi, P.

Nunez, A.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Pelizzo, M. G.

Piegari, A.

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
[CrossRef]

Plettner, T.

E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
[CrossRef]

Ramos, G.

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Scaglione, S.

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

Spencer, J.

E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
[CrossRef]

Sytchkova, A.

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

Wang, D.

Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
[CrossRef]

Wei, Q.

Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
[CrossRef]

Windt, D. L.

Yang, D.

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Zuppella, P.

IEEE Trans. Nucl. Sci. (2)

S. Baccaro, A. Cecilia, I. Di Sarcina, and A. Piegari, “Effect of γ irradiation on optical components,” IEEE Trans. Nucl. Sci. 52, 1779–1784 (2005).
[CrossRef]

E. Colby, G. Lum, T. Plettner, and J. Spencer, “Gamma radiation studies on optical materials,” IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002).
[CrossRef]

Opt. Commun. (1)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155, 376–385 (1998).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

A. Piegari, I. Di Sarcina, M. L. Grilli, F. Menchini, S. Scaglione, and A. Sytchkova, “Optical performance of narrow-band transmittance filters under low-and high-energy proton irradiation,” Proc. SPIE 8168, 816814 (2011).
[CrossRef]

Thin Solid Films (3)

H. Liu, G. Liu, S. Dong, S. He, and D. Yang, “Coloring effects of optical antireflective film irradiated by 60  keV protons,” Thin Solid Films 519, 5131–5134 (2011).
[CrossRef]

Q. Wei, H. Liu, D. Wang, and S. Liu, “Degradation in optical reflectance of Al film mirror induced by proton irradiation,” Thin Solid Films 519, 5046–5049 (2011).
[CrossRef]

M. Fernandez-Rodriguez, G. Ramos, F. del Monte, D. Levy, C. G. Alvarado, A. Nunez, and A. Alvarez-Herrero, “Ellipsometric analysis of gamma radiation effects on standard optical coatings used in aerospace applications,” Thin Solid Films 455, 545–550 (2004).
[CrossRef]

Other (4)

J. F. Ziegler and J. P. Biersack, www.srim.org .

CALLIOPE irradiation plant at ENEA, www.enea.it .

INFN—LNS accelerators, www.lns.infn.it .

Rudjer Boskovic Institute, www.irb.hr/en/str/zef/z3labs/liis .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Transmittance of (a) fused silica (suprasil) substrate, (b) Ta2O5, and (c) HfO2 thin films, before and after gamma irradiation at 1.79 MGy.

Fig. 2.
Fig. 2.

Transmittance of (a) Nb2O5 and (b) TiO2 thin films before and after gamma irradiation at 1.79 MGy.

Fig. 3.
Fig. 3.

Measurement (blue curve) and fitting (red curve) of the absorbance of the irradiated fused silica substrate.

Fig. 4.
Fig. 4.

Transmittance of (a) the AR coating and (b) the high-reflectance coating before and after gamma irradiation at 5.8 MGy.

Fig. 5.
Fig. 5.

Normalized transmittance of the NIR narrow-band filter before and after 30 MeV proton irradiation (enlarged wavelength scale).

Fig. 6.
Fig. 6.

Transmittance of the fused silica substrate before and after 60 keV proton irradiation.

Fig. 7.
Fig. 7.

Transmittance of (a) HfO2 and (b) TiO2 films before and after 60 keV proton irradiation (several measurements are made to check repeatability).

Fig. 8.
Fig. 8.

Transmittance of the UV narrow-band filter, before and after 60 keV proton irradiation.

Fig. 9.
Fig. 9.

(a) Distribution of ions and recoils in a SRIM simulation, for 60 keV protons, into the fused silica substrate and (b) oxygen vacancies distribution in the fused silica substrate.

Fig. 10.
Fig. 10.

(a) Distribution of ions and recoils in a SRIM simulation for 60 keV protons, into the UV narrow-band filter and (b) oxygen vacancies distribution in the SiO2 layers of the UV narrow-band filter.

Fig. 11.
Fig. 11.

(a) SiO content in the substrate according to Fig. 9(b) and (b) calculated transmittance of the fused silica substrate without and with SiO content.

Tables (1)

Tables Icon

Table 1. Irradiated Samples

Metrics