Abstract

Substrate defect planarization has been shown to increase the laser resistance of 1053 nm mirror coatings to greater than 100J/cm2, an increase of 20-fold, when tested with 10 ns laser pulses. Substrate surface particles that are overcoated with optical interference mirror coatings become nodular defects, which behave as microlenses intensifying light into the defect structure. By a discrete process of angle-dependent ion etching and unidirectional ion-beam deposition, substrate defects can be reduced in cross-sectional area by over 90%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
    [CrossRef]
  2. C. Wei, K. Yi, Z. Fan, and J. Shao, “Influence of composition and seed dimension on the structure and laser damage of nodular defects in HfO2/SiO2 high reflectors,” Appl. Opt. 51, 6781–6788 (2012).
    [CrossRef]
  3. X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
    [CrossRef]
  4. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef]
  5. X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
    [CrossRef]
  6. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
    [CrossRef]
  7. A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
    [CrossRef]
  8. C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
    [CrossRef]
  9. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
    [CrossRef]
  10. F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
    [CrossRef]
  11. D. Reicher, P. Black, and K. Jungling, “Defect formation in hafnium dioxide thin films,” Appl. Opt. 39, 1589–1599 (2000).
    [CrossRef]
  12. J. E. Wolfe, C. J. Stolz, and S. Falabella, “Velocity determination of particles ejected during electron beam deposition,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper FA2.
  13. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
    [CrossRef]
  14. P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).
  15. P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
    [CrossRef]
  16. B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
    [CrossRef]
  17. C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

2014 (1)

2012 (1)

2011 (3)

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
[CrossRef]

2008 (1)

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

2006 (2)

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

2005 (1)

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

2001 (1)

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

2000 (1)

1996 (1)

C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

1994 (1)

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
[CrossRef]

1993 (1)

1992 (1)

F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Baker, S. L.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Black, P.

Carmiglia, C. K.

F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Cheng, X.

X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Chow, R.

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Ding, T.

X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Falabella, S.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

J. E. Wolfe, C. J. Stolz, and S. Falabella, “Velocity determination of particles ejected during electron beam deposition,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper FA2.

Fan, Z.

Feit, M. D.

Folta, J. A.

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Fornier, A.

C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

He, H. B.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

He, W.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Jiao, H.

X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Jungling, K.

Kholi, S.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Kozlowski, M. R.

C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Krous, E.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Langdon, B.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Langston, P.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Li, D. W.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Li, H.

Li, X.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Liang, T.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Liddle, J. A.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Loomis, G. E.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Ma, B.

X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

McCurdy, P. R.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Menoni, C. S.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Mirkarimi, P. B.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Ogloza, A.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Olynick, D. L.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

Papandrew, A. B.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Patel, D.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Petersen, G. A.

F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Pistor, T. V.

Pond, B. J.

F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Qiu, S. R.

Rainer, F.

Reicher, D.

Robinson, J. C.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Rocca, J. J.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Salmassi, F.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Shan, Y. G.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Shao, J.

Sheehan, L.

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
[CrossRef]

Shen, Z.

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Soufli, R.

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Spiler, E.

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Spiller, E.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

Stearns, D. G.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Stivers, A. R.

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Stolz, C. J.

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

J. E. Wolfe, C. J. Stolz, and S. Falabella, “Velocity determination of particles ejected during electron beam deposition,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper FA2.

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Tench, J. J.

C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

Tench, R. J.

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
[CrossRef]

Tomasel, F.

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

Tuinyazi, A.

Walton, C. C.

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Wang, Y.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Wang, Z.

X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Wei, C.

Wei, Z.

Williams, F. L.

F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Wolfe, J. E.

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
[CrossRef]

J. E. Wolfe, C. J. Stolz, and S. Falabella, “Velocity determination of particles ejected during electron beam deposition,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper FA2.

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Wu, Z. L.

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

Yi, K.

Zhang, J.

X. Cheng, A. Tuinyazi, J. Zhang, T. Ding, H. Jiao, B. Ma, Z. Wei, H. Li, and Z. Wang, “Nanosecond laser-induced damage of nodular defects in dielectric multilayers,” Appl. Opt. 53, A62–A69 (2014).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

Zhao, Y. A.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Appl. Opt. (6)

J. Nanosci. Nanotechnol. (1)

P. B. Mirkarimi, E. Spiller, S. L. Baker, D. G. Stearns, J. C. Robinson, D. L. Olynick, F. Salmassi, J. A. Liddle, T. Liang, and A. R. Stivers, “A silicon-based, sequential coat-and-etch process to fabricate nearly perfect substrate surfaces,” J. Nanosci. Nanotechnol. 6, 28–35 (2006).

J. Vac. Sci. Technol. A (1)

F. L. Williams, G. A. Petersen, C. K. Carmiglia, and B. J. Pond, “In situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A 10, 1472–1478 (1992).
[CrossRef]

Microelectron. Eng. (1)

P. B. Mirkarimi, E. Spiler, S. L. Baker, J. C. Robinson, D. G. Stearns, J. A. Liddle, F. Salmassi, T. Liang, and A. R. Stivers, “Advancing the ion beam thin film planarization process for the smoothing of substrate particles,” Microelectron. Eng. 77, 369–381 (2005).
[CrossRef]

Opt. Commun. (1)

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electric field enhancement and laser damage growth in high-reflective coatings at 1064  nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Proc. SPIE (5)

A. B. Papandrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53–61 (2001).
[CrossRef]

C. J. Stolz, J. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

X. Cheng, T. Ding, W. He, J. Zhang, H. Jiao, B. Ma, Z. Shen, and Z. Wang, “Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors,” Proc. SPIE 8168, 816816 (2011).
[CrossRef]

B. Langdon, D. Patel, E. Krous, J. J. Rocca, C. S. Menoni, F. Tomasel, S. Kholi, P. R. McCurdy, P. Langston, and A. Ogloza, “Influence of process conditions on the optical properties HfO2/SiO2 thin films for high power laser coatings,” Proc. SPIE 6720, 67200X (2008).
[CrossRef]

M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, “Influence of defect shape on laser-induced damage in multiplayer coatings,” Proc. SPIE 2253, 743–750 (1994).
[CrossRef]

Other (2)

J. E. Wolfe, C. J. Stolz, and S. Falabella, “Velocity determination of particles ejected during electron beam deposition,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2013), paper FA2.

C. J. Stolz, J. A. Folta, P. B. Mirkarimi, R. Soufli, C. C. Walton, J. E. Wolfe, C. S. Menoni, and D. Patel, “Planarization of multilayer optical coating defects,” Provisional Patent Attorney Docket Number (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Typical nodule geometry irradiated at 45° incidence in actuality has a significantly wider incident angle range over the domed nodule.

Fig. 2.
Fig. 2.

Impact of inclusion diameter on nodule diameter and incident angle for a normal-incidence 30 layer, 5.4 μm thick coating.

Fig. 3.
Fig. 3.

Typical nodular defect (left), ideal planarized defect (center), and experimental setup (right).

Fig. 4.
Fig. 4.

Optical micrograph of 1mm2 test area with 5 μm diameter pillars prior to damage testing.

Fig. 5.
Fig. 5.

Impact of ion gun beam voltage and current on deposition and etching rate.

Fig. 6.
Fig. 6.

Control defect with no planarization layer (far left), 1 μm thick planarization layer (center left), 2 μm thick planarization layer (center right), and 3 μm thick planarization layer (far right).

Fig. 7.
Fig. 7.

Optical micrograph of 1mm2 test area with 5 μm diameter pillars after damage testing at 40J/cm2 (left image) and FIB top view image of the damage site before cross-sectioning (right image).

Fig. 8.
Fig. 8.

Typical laser damage results for 5 μm diameter pillars as a function of planarization layer thickness.

Fig. 9.
Fig. 9.

FIB cross-sectioned damage sites of 1 μm (left image), 2 μm (central image), and 5 μm (right image) diameter pillars.

Tables (2)

Tables Icon

Table 1. Change in Cross-sectional Area of Multilayer-Coated Engineered Nodular Defects Compared with Uncoated Nodular Defects as Measured by AFM

Tables Icon

Table 2. Single-Shot Laser Resistance (in J/cm2) of Multilayer-Coated Engineered Defects Tested at 1053 nm, 10 ns Pulse Length, p Polarization

Metrics