Abstract

High-reflection coatings with broad bandwidth can be achieved by pairing a low refractive index material, such as SiO2, with a high refractive index material, such as TiO2. To achieve high refractive index, low absorption TiO2 films, we optimized the reactive, ion-assisted deposition process (O2 levels, deposition rate, and ion beam settings) using e-beam evaporated Ti. TiO2 high-index layers were then paired with SiO2 low-index layers in a quarter-wave-type coating to achieve a broader high-reflection bandwidth compared to the same coating composed of HfO2/SiO2 layer pairs. However, the improved bandwidth exhibited by the TiO2/SiO2 coating is associated with lower laser damage threshold. To improve the laser damage resistance of the TiO2/SiO2 coating, we also created four coatings where HfO2 replaced some of the outer TiO2 layers. We present the laser damage results of these coatings to understand the trade-offs between good laser damage resistance and high-reflection bandwidth using TiO2 and HfO2.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.
  2. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
  3. H. Selhofer, E. Ritter, and R. Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt. 41, 756–762 (2002).
    [CrossRef]
  4. K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
    [CrossRef]
  5. C. J. Stolz and F. Y. Genin, “Laser resistant coatings,” in Optical Interference Coatings, N. B. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 309–333.
  6. “Determination of laser-damage threshold of optical surfaces. Part 1: 1-on-1 test,” ISO Standard 11254-1 (International Organization for Standardization, 2000).
  7. “Small optics laser damage test procedure,” (Lawrence Livermore National Laboratory, 2005).

2005 (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

2002 (2)

Atherton, B.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Bellum, J.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Genin, F. Y.

C. J. Stolz and F. Y. Genin, “Laser resistant coatings,” in Optical Interference Coatings, N. B. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 309–333.

Kimmel, M.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Kletecka, D.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Linsbod, R.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Rambo, P.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Rao, K. N.

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
[CrossRef]

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Ritter, E.

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Schwarz, J.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Selhofer, H.

Smith, I.

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Stolz, C. J.

C. J. Stolz and F. Y. Genin, “Laser resistant coatings,” in Optical Interference Coatings, N. B. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 309–333.

Appl. Opt. (1)

Opt. Eng. (1)

K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Opt. Eng. 41, 2357–2364 (2002).
[CrossRef]

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).

Other (4)

C. J. Stolz and F. Y. Genin, “Laser resistant coatings,” in Optical Interference Coatings, N. B. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 309–333.

“Determination of laser-damage threshold of optical surfaces. Part 1: 1-on-1 test,” ISO Standard 11254-1 (International Organization for Standardization, 2000).

“Small optics laser damage test procedure,” (Lawrence Livermore National Laboratory, 2005).

J. Bellum, P. Rambo, J. Schwarz, I. Smith, M. Kimmel, D. Kletecka, and B. Atherton, “Production of optical coatings resistant to damage by petawatt class laser pulses,” in Lasers—Applications in Science and Industry, K. Jakubczak, ed. (InTech, 2011), pp. 23–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Layer thicknesses used in the HR coating that has 10 TiO2/SiO2 inner layers and 11 HfO2/SiO2 outer layers (coating no. 4 from Table 1).

Fig. 2.
Fig. 2.

Index of refraction, n, and extinction coefficient, k, at 500 nm versus O2 back pressure at various deposition rates (in Å/s) for 100nm thick TiO2 layers. Arrows indicate the conditions where the TiO2 layer having the highest index with the lowest absorption was produced. (The complex index of refraction is n+ik and the optical absorption coefficient is 4πk/λ, where λ is the wavelength of the light.)

Fig. 3.
Fig. 3.

OptiChar analysis results for the TiO2 layer of highest index and lowest absorption from Fig. 2. (a) Spectral scan (in red) and OptiChar spectral fit (in black), (b) index of refraction, (c) extinction coefficient, and (d) parameters of the Cauchy model of refractive index and UV–Vis (exponential) model of absorption.

Fig. 4.
Fig. 4.

Spectrophotometer measurements of each 42-layer HR coating.

Fig. 5.
Fig. 5.

HR bandwidth at 45° AOI, Ppol of each 42-layer HR coating with respect to the number of TiO2 layers in the coating.

Fig. 6.
Fig. 6.

Laser damage threshold results at 1064 nm, 45° AOI, Ppol for each 42-layer HR coating according to the number of TiO2 layers.

Fig. 7.
Fig. 7.

Laser damage threshold at 1064 nm versus HR bandwidth for Ppol, 45° AOI.

Fig. 8.
Fig. 8.

(a) Damage frequency versus laser fluence results from the ISO 11254-1 LIDT tests, showing linear extrapolation lines that cross the horizontal axis at the LIDT fluence. (b) Cumulative number of nonpropagating damage sites versus laser fluence results from the NIF-MEL LIDT tests, where circled data points indicate the fluences at which propagating damage occurred.

Fig. 9.
Fig. 9.

Calculated electric field intensity of coating no. 4 (10 TiO2 layers) at 1054 nm, 45° AOI, Ppol. Vertical dashed lines indicate layer boundaries.

Tables (2)

Tables Icon

Table 1. Number of HfO2/SiO2 and TiO2/SiO2 Layer Pairs in Each 42-Layer HR Coating

Tables Icon

Table 2. Gain in LIDT and Reduction in HR Bandwidth as a Result of Replacing Outermost TiO2 Layers with HfO2 Layers

Metrics