Abstract

The refractive index and extinction coefficient are the most important optical characteristics of optical thin-film materials. Optical coating devices with excellent performance are achieved more easily when the selected materials have relatively high refractive index contrast. Here, we used an annealing method to fabricate low-refractive-index material in a multilayer structure originated from the Kirkendall effect. An optical thin film with a low-refractive-index of 1.37 measured at 550 nm was successfully demonstrated and produced by the Kirkendall effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
    [CrossRef]
  2. M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, and Y. Takano, “Influence of ion assistance on LaF3 films deposited by molybdenum boat evaporation,” Appl. Opt. 51, 2865–2869 (2012).
    [CrossRef]
  3. C. C. Lee, S. H. Chen, C. C. Kuo, and C. Y. Wei, “Achievement of an arbitrary bandwidth for a narrow bandpass filter,” Opt. Express 15, 15228–15233 (2007).
    [CrossRef]
  4. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  5. J. Chen, B. Wang, Y. Yang, Y. Shi, G. Xu, and P. Cui, “Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings,” Appl. Opt. 51, 6839–6843 (2012).
    [CrossRef]
  6. K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
    [CrossRef]
  7. A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass,” Trans. AIME 171, 130–142 (1947).
  8. M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
    [CrossRef]
  9. H. J. Fan, U. Gçsele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3, 1660–1671 (2007).
    [CrossRef]
  10. H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
    [CrossRef]
  11. F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
    [CrossRef]
  12. Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
    [CrossRef]
  13. L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
    [CrossRef]

2012

2011

F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
[CrossRef]

Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
[CrossRef]

2010

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

2007

C. C. Lee, S. H. Chen, C. C. Kuo, and C. Y. Wei, “Achievement of an arbitrary bandwidth for a narrow bandpass filter,” Opt. Express 15, 15228–15233 (2007).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

H. J. Fan, U. Gçsele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3, 1660–1671 (2007).
[CrossRef]

2006

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

2001

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

1996

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
[CrossRef]

K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
[CrossRef]

1947

A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass,” Trans. AIME 171, 130–142 (1947).

Abrams, K. J.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

André, J.

K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
[CrossRef]

Bang, S.

Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
[CrossRef]

Bin-Omran, S.

F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
[CrossRef]

Bouhemadou, A.

F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
[CrossRef]

Chen, J.

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Chen, S. H.

Chitica, N.

K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
[CrossRef]

Cserháti, C.

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

Cui, P.

Dobrowolski, J. A.

Fan, H. J.

H. J. Fan, U. Gçsele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3, 1660–1671 (2007).
[CrossRef]

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Gçsele, U.

H. J. Fan, U. Gçsele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3, 1660–1671 (2007).
[CrossRef]

Göselle, U.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Grundy, P. J.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

Gusak, A. M.

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

Hesse, D.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Jang, Y. W.

Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
[CrossRef]

Jeon, H.

Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
[CrossRef]

Jones, G. A.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

Kaneko, M.

Khenata, R.

F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
[CrossRef]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Kirkendall, E. O.

A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass,” Trans. AIME 171, 130–142 (1947).

Knez, M.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Kodentsov, A. A.

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

Kuo, C. C.

Lee, C. C.

Lee, J. Y.

Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
[CrossRef]

Li, W. X.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Liu, M. C.

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Nakahira, K.

Nielsch, K.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Pippel, E.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Qin, L.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

Rapp, S.

K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
[CrossRef]

Scholz, R.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Shen, T. H.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

Shi, Y.

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Smigelskas, A. D.

A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass,” Trans. AIME 171, 130–142 (1947).

Streubel, K.

K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
[CrossRef]

Sullivan, B. T.

Takano, Y.

Tikhonravov, A. V.

Trubetskov, M. K.

van Dal, M. J. H.

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

van Loo, F. J. J.

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

Verly, P. G.

Wang, B.

Wei, C. Y.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xu, G.

Yang, Y.

Zacharias, M.

H. J. Fan, U. Gçsele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3, 1660–1671 (2007).
[CrossRef]

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Zerarga, F.

F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. Streubel, S. Rapp, J. André, and N. Chitica, “1.26  μm vertical cavity laser with two InP/air-gap reflectors,” Electron. Lett. 32, 1369–1370 (1996).
[CrossRef]

Mater. Lett.

L. Qin, G. A. Jones, T. H. Shen, P. J. Grundy, W. X. Li, and K. J. Abrams, “The growth of ordered ZnAl2O4 nanostructures using AAO as a reactive template,” Mater. Lett. 64, 2685–2687 (2010).
[CrossRef]

Nat. Mater.

H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Göselle, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect,” Nat. Mater. 5, 627–631 (2006).
[CrossRef]

Nat. Photonics

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Opt. Express

Phys. Rev. Lett.

M. J. H. van Dal, A. M. Gusak, C. Cserháti, A. A. Kodentsov, and F. J. J. van Loo, “Microstructural stability of the Kirkendall plane in solid state diffusion,” Phys. Rev. Lett. 86, 3352–3355 (2001).
[CrossRef]

Phys. Status Solidi B

Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, “Microstructural characterization at the interface of Al2O3/ZnO/Al2O3 thin films grown by atomic layer deposition,” Phys. Status Solidi B 248, 1634–1638 (2011).
[CrossRef]

Small

H. J. Fan, U. Gçsele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review,” Small 3, 1660–1671 (2007).
[CrossRef]

Solid State Sci.

F. Zerarga, A. Bouhemadou, R. Khenata, and S. Bin-Omran, “Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4,” Solid State Sci. 13, 1638–1648 (2011).
[CrossRef]

Trans. AIME

A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass,” Trans. AIME 171, 130–142 (1947).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic illustration of the Kirkendall effect at the interface of ZnO and Al2O3.

Fig. 2.
Fig. 2.

XRD pattern of the double layered Al2O3/ZnO sample after the annealing process. Inset-magnified XRD pattern of sample after the 700°C annealing process from 58° to 70°.

Fig. 3.
Fig. 3.

Cross-sectional SEM image of the Al2O3/ZnO/Al2O3 thin films (a) before and (b) after an 800°C annealing process for 4 h.

Fig. 4.
Fig. 4.

Refractive index and extinction coefficient of ZnO after an 800°C annealing process.

Fig. 5.
Fig. 5.

Transmittance spectra of thin films for as deposited (black line), after annealing (red-dashed line) and in the simulation (green-dotted line).

Fig. 6.
Fig. 6.

Index profile of simulation with inhomogeneity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ZnO(S)+Al2O3(S)=ZnAl2O4(S).

Metrics