Abstract

The optical properties of core-shell quantum dots (QDs) are important for optoelectronic devices and biological applications. In this study, we investigate the optical properties of core-shell CdSe/ZnS QDs embedded in PMMA polymer thin films. The luminescence from QD emission would be more applicable if the spatial distribution of the emission was controllable. We propose a method to control the emission distribution by modifying the nanostructure. A bi-periodic nanostructure was fabricated and characterized in hybrid QD thin films by a nano-imprint technique. The finite difference time domain method was used to simulate the electric field distribution in the measured structure. It is shown that the far-field distribution of the QD emission is controllable by manipulating the nanostructure of the hybrid QD thin films.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
    [CrossRef]
  2. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University, 1998).
  3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
  4. S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008).
    [CrossRef]
  5. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
    [CrossRef]
  6. P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112, 18737–18753 (2008).
    [CrossRef]
  7. W. Shockley and J. J. J. Queisser, “Efficiency loss mechanisms: theory and characterization,” J. Appl. Phys. 32, 510–519 (1961).
    [CrossRef]
  8. Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
    [CrossRef]
  9. L. Zhou, C. Gao, and W. Xu, “Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots,” J. Mater. Chem. 20, 5675–5681 (2010).
    [CrossRef]
  10. D. Sun and H.-J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methyl methacrylate),” Appl. Phys. Lett. 94, 253106 (2009).
    [CrossRef]
  11. J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25, 207–218 (2006).
    [CrossRef]
  12. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
    [CrossRef]
  13. A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).
    [CrossRef]
  14. D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
    [CrossRef]
  15. M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
    [CrossRef]
  16. V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
    [CrossRef]
  17. J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
    [CrossRef]
  18. G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
    [CrossRef]
  19. C. Martin, L. Ressier, and J. P. Peyrade, “Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,” Physica E 17, 523–525 (2003).
    [CrossRef]

2012

Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
[CrossRef]

2011

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

2010

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).
[CrossRef]

D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

L. Zhou, C. Gao, and W. Xu, “Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots,” J. Mater. Chem. 20, 5675–5681 (2010).
[CrossRef]

2009

D. Sun and H.-J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methyl methacrylate),” Appl. Phys. Lett. 94, 253106 (2009).
[CrossRef]

2008

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112, 18737–18753 (2008).
[CrossRef]

2006

J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25, 207–218 (2006).
[CrossRef]

2004

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

2003

C. Martin, L. Ressier, and J. P. Peyrade, “Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,” Physica E 17, 523–525 (2003).
[CrossRef]

2002

S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[CrossRef]

1998

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

1996

G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
[CrossRef]

1985

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[CrossRef]

1961

W. Shockley and J. J. J. Queisser, “Efficiency loss mechanisms: theory and characterization,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Alvistos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

Barnes, M. D.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Bawendi, M.

S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[CrossRef]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

Bulovic, V.

S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[CrossRef]

Cheng, L.-J.

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

Coe, S.

S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[CrossRef]

Costa-Fernández, J. M.

J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25, 207–218 (2006).
[CrossRef]

Damon Hoff, J.

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

de Mello Donegá, C.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

Demir, H. V.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

Dickert, S.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Efros, A. L.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[CrossRef]

Ekimov, A. I.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[CrossRef]

Gao, C.

L. Zhou, C. Gao, and W. Xu, “Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots,” J. Mater. Chem. 20, 5675–5681 (2010).
[CrossRef]

Gaponenko, S. V.

S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University, 1998).

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

Guo, L. J.

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

Guo-Hong, M.

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

Ho, T.-L.

Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
[CrossRef]

Hong, M.

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

Hong-Liang, M.

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

Hsiao, J.-J.

Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
[CrossRef]

Hsu, Q.-C.

Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
[CrossRef]

Hunt, A. J.

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

Jung, J. H.

D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

Kamat, P. V.

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112, 18737–18753 (2008).
[CrossRef]

Kim, T. W.

D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

Lu, Z.

G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
[CrossRef]

Martin, C.

C. Martin, L. Ressier, and J. P. Peyrade, “Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,” Physica E 17, 523–525 (2003).
[CrossRef]

Meijerink, A.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

Meyhofer, E.

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

Nandwana, V.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Nie, S.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).
[CrossRef]

Nizamoglu, S.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

Onushchenko, A. A.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[CrossRef]

Pereiro, R.

J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25, 207–218 (2006).
[CrossRef]

Peyrade, J. P.

C. Martin, L. Ressier, and J. P. Peyrade, “Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,” Physica E 17, 523–525 (2003).
[CrossRef]

Queisser, J. J. J.

W. Shockley and J. J. J. Queisser, “Efficiency loss mechanisms: theory and characterization,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Ressier, L.

C. Martin, L. Ressier, and J. P. Peyrade, “Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,” Physica E 17, 523–525 (2003).
[CrossRef]

Rotello, V. M.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Sanz-Medel, A.

J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25, 207–218 (2006).
[CrossRef]

Shockley, W.

W. Shockley and J. J. J. Queisser, “Efficiency loss mechanisms: theory and characterization,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

Smith, A. M.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).
[CrossRef]

Son, D. I.

D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

Subramani, C.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Sue, H.-J.

D. Sun and H.-J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methyl methacrylate),” Appl. Phys. Lett. 94, 253106 (2009).
[CrossRef]

Sun, D.

D. Sun and H.-J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methyl methacrylate),” Appl. Phys. Lett. 94, 253106 (2009).
[CrossRef]

Tuominen, M. T.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Wang, G.

G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
[CrossRef]

Wei, Y.

G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
[CrossRef]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

Wen-Jun, W.

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

Woo, W. K.

S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[CrossRef]

Wu, C.-D.

Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
[CrossRef]

Wuister, S. F.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

Xu, W.

L. Zhou, C. Gao, and W. Xu, “Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots,” J. Mater. Chem. 20, 5675–5681 (2010).
[CrossRef]

Xue-Xi, G.

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

Yang, B.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

Yeh, Y.-C.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

You, C. H.

D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

Yuan, C.

G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
[CrossRef]

Zengin, G.

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

Zhou, L.

L. Zhou, C. Gao, and W. Xu, “Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots,” J. Mater. Chem. 20, 5675–5681 (2010).
[CrossRef]

Acc. Chem. Res.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43, 190–200 (2010).
[CrossRef]

Appl. Phys. Lett.

D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, “Carrier transport mechanisms of organic bi-stable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010).
[CrossRef]

D. Sun and H.-J. Sue, “Tunable ultraviolet emission of ZnO quantum dots in transparent poly(methyl methacrylate),” Appl. Phys. Lett. 94, 253106 (2009).
[CrossRef]

S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008).
[CrossRef]

Chin. Phys. B

M. Hong, M. Guo-Hong, W. Wen-Jun, G. Xue-Xi, and M. Hong-Liang, “Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots,” Chin. Phys. B 17, 1280 (2008).
[CrossRef]

J. Appl. Phys.

W. Shockley and J. J. J. Queisser, “Efficiency loss mechanisms: theory and characterization,” J. Appl. Phys. 32, 510–519 (1961).
[CrossRef]

J. Chem. Phys.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

J. Mater. Chem.

L. Zhou, C. Gao, and W. Xu, “Simultaneous photoluminescence import and mechanical enhancement of polymer films using silica-hybridized quantum dots,” J. Mater. Chem. 20, 5675–5681 (2010).
[CrossRef]

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructures via electron beam lithography,” J. Mater. Chem. 21, 16859–16862 (2011).
[CrossRef]

J. Phys. Chem. C

P. V. Kamat, “Quantum dot solar cells. Semiconductor nanocrystals as light harvesters,” J. Phys. Chem. C 112, 18737–18753 (2008).
[CrossRef]

Microelectron. Eng.

Q.-C. Hsu, J.-J. Hsiao, T.-L. Ho, and C.-D. Wu, “Fabrication of photonic crystal structures on flexible organic light-emitting diodes using nanoimprint,” Microelectron. Eng. 91, 178–184 (2012).
[CrossRef]

Nano Lett.

J. Damon Hoff, L.-J. Cheng, E. Meyhofer, L. J. Guo, and A. J. Hunt, “Nanoscale protein patterning by imprint lithography,” Nano Lett. 4, 853–857 (2004).
[CrossRef]

Nature

S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[CrossRef]

Physica E

C. Martin, L. Ressier, and J. P. Peyrade, “Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography,” Physica E 17, 523–525 (2003).
[CrossRef]

Science

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alvistos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).

Solid State Commun.

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
[CrossRef]

Thin Solid Films

G. Wang, Z. Lu, C. Yuan, and Y. Wei, “Influence of the surface pressure of Langmuir–Blodgett films on the efficiency of organic electroluminescence,” Thin Solid Films 288, 334–336 (1996).
[CrossRef]

TrAC, Trends Anal. Chem.

J. M. Costa-Fernández, R. Pereiro, and A. Sanz-Medel, “The use of luminescent quantum dots for optical sensing,” TrAC, Trends Anal. Chem. 25, 207–218 (2006).
[CrossRef]

Other

S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

TEM image of core-shell CdSe/ZnS QDs with diameters of around 3 nm.

Fig. 2.
Fig. 2.

Absorption and luminescence spectra of hybrid thin film layers of PMMA/core-shell CdSe/ZnS QDs.

Fig. 3.
Fig. 3.

Nano-imprint method applied to obtain the nanostructured polymer films. (a) Sketch of a silicon mold with a periodic structure and (d) cross-sectional view. (b) Principal step in the thermal imprinting lithography process and (e) cross-sectional view. (c) Expected nanostructured hybrid polymer with (f) cross-sectional view.

Fig. 4.
Fig. 4.

(a) Patterned silicon mold with its periodic structure [it is the step (a) in Fig. 3]. (b) Nanostructured hybrid thin film with QDs made by nanoimprint technique [step (c) in Fig. 3].

Fig. 5.
Fig. 5.

Calculated first-order diffraction angle for a grating period of 1.6 μm versus wavelength. For QDs, the light emission occurs at a wavelength of 560 nm, and the diffraction angle is expected to be 20.5°.

Fig. 6.
Fig. 6.

Left: cross section of the considered structure. Right: electric field simulation at 560 nm.

Fig. 7.
Fig. 7.

Left: top view of the structure. Right: electric field simulation of the left-hand region.

Fig. 8.
Fig. 8.

Far-field simulation of diffraction pattern distribution for an emission wavelength of 560 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θm=sin1(mλd).

Metrics