Abstract

A new concept enhances the capability of photo-thermal absorption measurements with transversal probe beam guiding by overcoming drawbacks such as a lack of sensitivity for materials with low photo-thermal response and/or round substrate geometry. The sandwich concept using the laser-induced deflection technique is introduced and tested for the investigation of highly reflecting (HR) coatings. The idea behind the sandwich concept is based on the decoupling of the optical materials for the pump and probe beams. This is realized by either placing a HR coated rectangular substrate in between two optical (sandwich) plates or attaching a HR coated thin round substrate onto one optical plate. For both configurations, the sandwich concept results in a strong increase in sensitivity for the measurement of HR coatings deposited onto photo-thermally insensitive substrates. Experiments reveal that for a CaF2 substrate, up to two orders of magnitude enhancement in sensitivity can be achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gallais, M. Commandré, “Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces,” Appl. Opt. 45, 1416–1424 (2006).
    [CrossRef]
  2. J. Cifre, J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
    [CrossRef]
  3. U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
  4. L. Jensen, I. Balasa, H. Blaschke, D. Ristau, “Novel technique for the determination of hydroxyl distributions in fused silica,” Opt. Express 17, 17144–17149 (2009).
    [CrossRef]
  5. M. Guntau, W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
    [CrossRef]
  6. C. Mühlig, W. Triebel, S. Kufert, S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135–C142 (2008).
    [CrossRef]
  7. C. Mühlig, S. Kufert, S. Bublitz, U. Speck, “Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results,” Appl. Opt. 50, C449–C456 (2011).
    [CrossRef]

2011 (1)

2009 (1)

2008 (1)

2006 (1)

2000 (1)

M. Guntau, W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

1998 (1)

J. Cifre, J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

1996 (1)

U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).

Balasa, I.

Blaschke, H.

Bublitz, S.

Cifre, J.

J. Cifre, J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

Commandré, M.

Gallais, L.

Groß, T.

U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).

Guntau, M.

M. Guntau, W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

Jensen, L.

Kufert, S.

Mühlig, C.

Ristau, D.

L. Jensen, I. Balasa, H. Blaschke, D. Ristau, “Novel technique for the determination of hydroxyl distributions in fused silica,” Opt. Express 17, 17144–17149 (2009).
[CrossRef]

U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).

Roger, J. P.

J. Cifre, J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

Speck, U.

Triebel, W.

C. Mühlig, W. Triebel, S. Kufert, S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135–C142 (2008).
[CrossRef]

M. Guntau, W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

Welling, H.

U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).

Willamowski, U.

U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).

Appl. Opt. (3)

Opt. Express (1)

Proc. SPIE (1)

U. Willamowski, T. Groß, D. Ristau, H. Welling, “Calorimetric measurement of optical absorption at 532  nm and 1064  nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).

Rev. Sci. Instrum. (1)

M. Guntau, W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

Thin Solid Films (1)

J. Cifre, J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Sketch of the standard LID measurement principle including calculated isolines of temperature and refractive index for fused silica as well as the probe beam propagation and (b) picture of the setup for the new sandwich concept.

Fig. 2.
Fig. 2.

Illustration of applying the new concept to investigate HR coatings deposited onto thin round substrates.

Fig. 3.
Fig. 3.

LID results for a CaF 2 substrate ( 10 mm × 10 mm × 20 mm ) with electrical surface heater ( 4 mm × 4 mm ) placed between different sandwich tile materials ( 20 mm × 20 mm × 10 mm ).

Fig. 4.
Fig. 4.

LID signals and absorption values for a HR (1030 nm) coating on fused silica substrate ( 8 mm × 8 mm × 6 mm ) placed between fused silica and PMMA sandwich tile ( 20 mm × 20 mm × 10 mm ).

Fig. 5.
Fig. 5.

LID signal and absorption value for a HR (193 nm) coating on CaF 2 substrate ( = 1 , thickness: 1 mm) attached to a thick CaF 2 tile ( 20 mm × 20 mm × 20 mm ).

Fig. 6.
Fig. 6.

LID results for a fused silica substrate ( = 1 , thickness: 1 mm) with electrical surface heater ( = 3 mm ) placed attached to different tile materials ( 20 mm × 20 mm × 20 mm ).

Tables (1)

Tables Icon

Table 1. Relative Increase of Measurement Time for Different Sandwich Tile Materials Compared to CaF 2

Metrics