Abstract

Fluorine-doped tin oxide (FTO) films were prepared by pulsed DC magnetron sputtering with a metal Sn target. Two different modes were applied to deposit the FTO films, and their respective optical and electrical properties were evaluated. In the transition mode, the minimum resistivity of the FTO film was 1.63×103Ωcm with average transmittance of 80.0% in the visible region. Furthermore, FTO films deposited in the oxide mode and mixed simultaneously with H2 could achieve even lower resistivity to 8.42×104Ωcm and higher average transmittance up to 81.1% in the visible region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).
    [CrossRef]
  2. T. Kawashima, H. Matsui, and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films 445, 241–244 (2003).
    [CrossRef]
  3. R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
    [CrossRef]
  4. B.-H. Liao, C.-C. Kuo, P.-J. Chen, and C.-C. Lee, “Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target,” Appl. Opt. 50, C106–C110 (2011).
    [CrossRef]
  5. H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–221 (2004).
    [CrossRef]
  6. H. Kim, R. C. Y. Auyeung, and A. Piqué, “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition,” Thin Solid Films 516, 5052–5056 (2008).
    [CrossRef]
  7. E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
    [CrossRef]
  8. P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
    [CrossRef]
  9. K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
    [CrossRef]
  10. J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
    [CrossRef]
  11. C. G. Van de Walle, “Hydrogen as a shallow center in semiconductors and oxides,” Phys. Status Solidi B 235, 89–95 (2003).
    [CrossRef]
  12. C. G. Van de Walle, “Hydrogen in semiconductors and insulators,” J. Alloys Compd. 446–447, 48–51 (2007).
    [CrossRef]
  13. A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
    [CrossRef]
  14. C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature 423, 626–628 (2003).
    [CrossRef]
  15. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
    [CrossRef]

2011 (1)

2009 (2)

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
[CrossRef]

2008 (2)

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
[CrossRef]

H. Kim, R. C. Y. Auyeung, and A. Piqué, “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition,” Thin Solid Films 516, 5052–5056 (2008).
[CrossRef]

2007 (3)

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).
[CrossRef]

C. G. Van de Walle, “Hydrogen in semiconductors and insulators,” J. Alloys Compd. 446–447, 48–51 (2007).
[CrossRef]

2005 (1)

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

2004 (1)

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–221 (2004).
[CrossRef]

2003 (3)

T. Kawashima, H. Matsui, and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films 445, 241–244 (2003).
[CrossRef]

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature 423, 626–628 (2003).
[CrossRef]

C. G. Van de Walle, “Hydrogen as a shallow center in semiconductors and oxides,” Phys. Status Solidi B 235, 89–95 (2003).
[CrossRef]

1999 (1)

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

1976 (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Auyeung, R. C. Y.

H. Kim, R. C. Y. Auyeung, and A. Piqué, “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition,” Thin Solid Films 516, 5052–5056 (2008).
[CrossRef]

Bilichuk, S. V.

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Canestraroa, C. D.

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

Chen, P.-J.

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Gorley, P. M.

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).
[CrossRef]

Grechko, V. O.

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Han, C.-H.

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

Han, D.-W.

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

Horley, P. P.

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Janotti, A.

J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
[CrossRef]

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
[CrossRef]

Kaiser, N.

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

Kawashima, T.

T. Kawashima, H. Matsui, and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films 445, 241–244 (2003).
[CrossRef]

Khomyak, V. V.

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Kim, H.

H. Kim, R. C. Y. Auyeung, and A. Piqué, “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition,” Thin Solid Films 516, 5052–5056 (2008).
[CrossRef]

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–221 (2004).
[CrossRef]

Kuantama, E.

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

Kuo, C.-C.

Lee, C.-C.

Liao, B.-H.

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Matsui, H.

T. Kawashima, H. Matsui, and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films 445, 241–244 (2003).
[CrossRef]

Mellob, R. M. Q.

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

Micaronib, L.

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

Murozono, M.

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

Neugebauer, J.

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature 423, 626–628 (2003).
[CrossRef]

Nishio, T.

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

Omura, K.

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

Orletsky, I. G.

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Piqué, A.

H. Kim, R. C. Y. Auyeung, and A. Piqué, “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition,” Thin Solid Films 516, 5052–5056 (2008).
[CrossRef]

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–221 (2004).
[CrossRef]

Romana, L. S.

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

Scheffler, M.

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
[CrossRef]

Singh, A. K.

J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
[CrossRef]

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
[CrossRef]

Song, J.-E.

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

Sung, Y.-M.

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

Tanabe, N.

T. Kawashima, H. Matsui, and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films 445, 241–244 (2003).
[CrossRef]

Tsuji, M.

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

Valaskia, R.

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

Van de Walle, C. G.

J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
[CrossRef]

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
[CrossRef]

C. G. Van de Walle, “Hydrogen in semiconductors and insulators,” J. Alloys Compd. 446–447, 48–51 (2007).
[CrossRef]

C. G. Van de Walle, “Hydrogen as a shallow center in semiconductors and oxides,” Phys. Status Solidi B 235, 89–95 (2003).
[CrossRef]

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature 423, 626–628 (2003).
[CrossRef]

Varley, J. B.

J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
[CrossRef]

Veluchamy, P.

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–221 (2004).
[CrossRef]

J. Alloys Compd. (1)

C. G. Van de Walle, “Hydrogen in semiconductors and insulators,” J. Alloys Compd. 446–447, 48–51 (2007).
[CrossRef]

J. Electrochem. Soc. (1)

K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono, “A pyrosol technique to deposit highly transparent, low-resistance SnO2: F thin films from dimethyltin dichloride,” J. Electrochem. Soc. 146, 2113–2116 (1999).
[CrossRef]

J. Phys. E (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Mater. Sci. Eng. B (1)

P. M. Gorley, V. V. Khomyak, S. V. Bilichuk, I. G. Orletsky, P. P. Horley, and V. O. Grechko, “SnO2 films: formation, electrical and optical properties,” Mater. Sci. Eng. B 118, 160–163 (2005).
[CrossRef]

Nature (1)

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature 423, 626–628 (2003).
[CrossRef]

Phys. Rev. B (1)

J. B. Varley, A. Janotti, A. K. Singh, and C. G. Van de Walle, “Hydrogen interactions with acceptor impurities in SnO2: first-principles calculations,” Phys. Rev. B 79, 245206 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, “Sources of electrical conductivity in SnO2,” Phys. Rev. Lett. 101, 055502 (2008).
[CrossRef]

Phys. Status Solidi B (1)

C. G. Van de Walle, “Hydrogen as a shallow center in semiconductors and oxides,” Phys. Status Solidi B 235, 89–95 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

R. Valaskia, C. D. Canestraroa, L. Micaronib, R. M. Q. Mellob, L. S. Romana, and N. Kaiser, “Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates,” Sol. Energy Mater. Sol. Cells 91, 684–688 (2007).
[CrossRef]

C. G. Granqvist, “Transparent conductors as solar energy materials: a panoramic review,” Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007).
[CrossRef]

Thin Solid Films (3)

T. Kawashima, H. Matsui, and N. Tanabe, “New transparent conductive films: FTO coated ITO,” Thin Solid Films 445, 241–244 (2003).
[CrossRef]

H. Kim, R. C. Y. Auyeung, and A. Piqué, “Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition,” Thin Solid Films 516, 5052–5056 (2008).
[CrossRef]

E. Kuantama, D.-W. Han, Y.-M. Sung, J.-E. Song, and C.-H. Han, “Structure and thermal properties of transparent conductive nanoporous F:SnO2 films,” Thin Solid Films 517, 4211–4214 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic representation of the FTO rutile structure and the corresponding sites for the Sn, O, F, and H atoms.

Fig. 2.
Fig. 2.

Schematic diagram of the new deposition method.

Fig. 3.
Fig. 3.

Sputtering modes used for FTO preparation.

Fig. 4.
Fig. 4.

Schematic diagram of the sputtering system.

Fig. 5.
Fig. 5.

Transmittance spectrum and average transmittance of FTO films deposited with different ratios of CF4 to O2 gases.

Fig. 6.
Fig. 6.

Extinction coefficient of undoped and doped SnO2 films deposited with various CF4 to O2 gases.

Fig. 7.
Fig. 7.

Electrical properties of FTO films deposited with different ratios of CF4 to O2 gases.

Fig. 8.
Fig. 8.

Transmittance spectra of SnO2 and FTO films deposited with CF4 and the mixed gases of CF4 and H2 with different ratios.

Fig. 9.
Fig. 9.

Refractive index of undoped and doped SnO2 films deposited with CF4 (6.5 sccm) and the mixed gases of CF4 (6.5 sccm) and H2 (22 sccm).

Fig. 10.
Fig. 10.

Extinction coefficient of undoped and doped SnO2 films deposited with CF4 (6.5 sccm) and the mixed gases of CF4 (6.5 sccm) and H2 (22 sccm).

Fig. 11.
Fig. 11.

XRD patterns for oxide mode SnO2, FTO with 6.5 sccm CF4, and FTO:H with 6.5 sccm CF4 and 22 sccm H2.

Tables (1)

Tables Icon

Table 1. Electrical and Optical Properties of the Undoped and Doped SnO2 Films

Metrics