Abstract

Single-material interference filters are obtained from magnetron sputtered alternating layers of WO3 deposited at different pressures. The stop band is investigated with respect to the refractive index contrast and the total number of layers. Some features of rugate filters are also investigated. We show experimentally that a sine-wave index profile modulation can be used to suppress the harmonic stop bands located at odd fractional wavelengths. We also show experimental evidence that sidelobes near the stop band can be attenuated by using a sine-wave index profile that has a variable amplitude.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
    [CrossRef]
  2. G. Beydaghyan, G. Bader, and P. Ashrit, “Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films,” Thin Solid Films 516, 1646–1650 (2008).
    [CrossRef]
  3. J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
    [CrossRef]
  4. H. A. Macleod, Thin-film Optical filters, 4th ed. (CRC Press, 2010), Chap. 12.
  5. H. Kanedo, F. Nagao, and K. Miyake, “Preparation and properties of the dc reactively sputtered tungsten oxide films,” J. Appl. Phys. 63, 510–517 (1988).
    [CrossRef]
  6. V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
    [CrossRef]
  7. H.-H. Lu, “Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering,” J. Alloys Compd. 465, 429–435 (2008).
    [CrossRef]
  8. A. Kaushal and D. Kaur, “Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique,” J. Nanopart. Res. 13, 2485–2496 (2011).
    [CrossRef]
  9. C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
    [CrossRef]
  10. C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
    [CrossRef]
  11. A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91, 266–274 (2007).
    [CrossRef]
  12. F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
    [CrossRef]
  13. B. Baloukas, J.-M. Lamarre, and L. Martinu, “Electrochromic interference filters fabricated from dense and porous tungsten oxides films,” Sol. Energy Mater. Sol. Cells 95, 807–815 (2011).
    [CrossRef]
  14. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993).
    [CrossRef]
  15. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989).
    [CrossRef]
  16. W. H. Southwell, “Extended-bandwidth reflector designs by using wavelets,” Appl. Opt. 36, 314–318 (1997).
    [CrossRef]
  17. E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
    [CrossRef]
  18. G. Bader, P. V. Ashrit, F. E. Girouard, and V.-V. Truong, “Reflection-transmission photoellipsometry: theory and experiments,” Appl. Opt. 34, 1684–1691 (1995).
    [CrossRef]

2012 (1)

V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
[CrossRef]

2011 (2)

A. Kaushal and D. Kaur, “Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique,” J. Nanopart. Res. 13, 2485–2496 (2011).
[CrossRef]

B. Baloukas, J.-M. Lamarre, and L. Martinu, “Electrochromic interference filters fabricated from dense and porous tungsten oxides films,” Sol. Energy Mater. Sol. Cells 95, 807–815 (2011).
[CrossRef]

2008 (2)

H.-H. Lu, “Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering,” J. Alloys Compd. 465, 429–435 (2008).
[CrossRef]

G. Beydaghyan, G. Bader, and P. Ashrit, “Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films,” Thin Solid Films 516, 1646–1650 (2008).
[CrossRef]

2007 (2)

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91, 266–274 (2007).
[CrossRef]

2006 (1)

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

2005 (1)

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

2002 (2)

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

1997 (1)

1995 (1)

1993 (1)

1989 (1)

1988 (1)

H. Kanedo, F. Nagao, and K. Miyake, “Preparation and properties of the dc reactively sputtered tungsten oxide films,” J. Appl. Phys. 63, 510–517 (1988).
[CrossRef]

1986 (1)

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
[CrossRef]

Ashrit, P.

G. Beydaghyan, G. Bader, and P. Ashrit, “Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films,” Thin Solid Films 516, 1646–1650 (2008).
[CrossRef]

Ashrit, P. V.

Bader, G.

G. Beydaghyan, G. Bader, and P. Ashrit, “Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films,” Thin Solid Films 516, 1646–1650 (2008).
[CrossRef]

G. Bader, P. V. Ashrit, F. E. Girouard, and V.-V. Truong, “Reflection-transmission photoellipsometry: theory and experiments,” Appl. Opt. 34, 1684–1691 (1995).
[CrossRef]

Bailini, A.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Baloukas, B.

B. Baloukas, J.-M. Lamarre, and L. Martinu, “Electrochromic interference filters fabricated from dense and porous tungsten oxides films,” Sol. Energy Mater. Sol. Cells 95, 807–815 (2011).
[CrossRef]

Baserga, A.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Beghi, M. G.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Beydaghyan, G.

G. Beydaghyan, G. Bader, and P. Ashrit, “Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films,” Thin Solid Films 516, 1646–1650 (2008).
[CrossRef]

Bittencourt, C.

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Bottani, C. E.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Bovard, B. G.

Calderer, J.

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Capuj, N. E.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Casari, C. S.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Cattaneo, D.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Correig, X.

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Di Fonzo, F.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Gaburro, Z.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Ghulinyan, M.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Girouard, F. E.

Hussain, O. M.

V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
[CrossRef]

Kanedo, H.

H. Kanedo, F. Nagao, and K. Miyake, “Preparation and properties of the dc reactively sputtered tungsten oxide films,” J. Appl. Phys. 63, 510–517 (1988).
[CrossRef]

Karuppasamy, A.

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91, 266–274 (2007).
[CrossRef]

Kaur, D.

A. Kaushal and D. Kaur, “Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique,” J. Nanopart. Res. 13, 2485–2496 (2011).
[CrossRef]

Kaushal, A.

A. Kaushal and D. Kaur, “Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique,” J. Nanopart. Res. 13, 2485–2496 (2011).
[CrossRef]

Kim, J. K.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Kondaiah, P.

V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
[CrossRef]

Lamarre, J.-M.

B. Baloukas, J.-M. Lamarre, and L. Martinu, “Electrochromic interference filters fabricated from dense and porous tungsten oxides films,” Sol. Energy Mater. Sol. Cells 95, 807–815 (2011).
[CrossRef]

Landers, R.

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

Li Bassi, A.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Liobet, E.

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Lorenzo, E.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Lu, H.-H.

H.-H. Lu, “Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering,” J. Alloys Compd. 465, 429–435 (2008).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-film Optical filters, 4th ed. (CRC Press, 2010), Chap. 12.

Madhavi, V.

V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
[CrossRef]

Martinu, L.

B. Baloukas, J.-M. Lamarre, and L. Martinu, “Electrochromic interference filters fabricated from dense and porous tungsten oxides films,” Sol. Energy Mater. Sol. Cells 95, 807–815 (2011).
[CrossRef]

Miyake, K.

H. Kanedo, F. Nagao, and K. Miyake, “Preparation and properties of the dc reactively sputtered tungsten oxide films,” J. Appl. Phys. 63, 510–517 (1988).
[CrossRef]

Molas, G.

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Nagao, F.

H. Kanedo, F. Nagao, and K. Miyake, “Preparation and properties of the dc reactively sputtered tungsten oxide films,” J. Appl. Phys. 63, 510–517 (1988).
[CrossRef]

Navarro-Urrios, D.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Ossi, P. M.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Oton, C. J.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Pavesi, L.

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Russo, V.

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

Schubert, E. F.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Schubert, M. F.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Silva, M. A. P.

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Southwell, W. H.

Subrahmanyam, A.

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91, 266–274 (2007).
[CrossRef]

Sueiras, J. E.

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

Thornton, J. A.

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
[CrossRef]

Truong, V.-V.

Uthanna, S.

V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
[CrossRef]

Xi, J.-Q.

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. F. Schubert, J.-Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
[CrossRef]

Catal Today (1)

F. Di Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M. G. Beghi, P. M. Ossi, C. S. Casari, A. Li Bassi, and C. E. Bottani, “Synthesis and characterization of tungsten and tungsten oxide nanostructured films,” Catal Today 116, 69–73 (2006).
[CrossRef]

ISRN Opt. (1)

V. Madhavi, P. Kondaiah, O. M. Hussain, and S. Uthanna, “Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films,” ISRN Opt. 2012, 801468 (2012).
[CrossRef]

J. Alloys Compd. (1)

H.-H. Lu, “Effects of oxygen contents on the electrochromic properties of tungsten oxide films prepared by reactive magnetron sputtering,” J. Alloys Compd. 465, 429–435 (2008).
[CrossRef]

J. Appl. Phys. (1)

H. Kanedo, F. Nagao, and K. Miyake, “Preparation and properties of the dc reactively sputtered tungsten oxide films,” J. Appl. Phys. 63, 510–517 (1988).
[CrossRef]

J. Electrochem. Soc. (1)

C. Bittencourt, R. Landers, E. Liobet, G. Molas, X. Correig, M. A. P. Silva, J. E. Sueiras, and J. Calderer, “Effects of oxygen partial pressure and annealing temperature on the formation of sputtered tungsten oxide films,” J. Electrochem. Soc. 149, H81–H86 (2002).
[CrossRef]

J. Nanopart. Res. (1)

A. Kaushal and D. Kaur, “Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique,” J. Nanopart. Res. 13, 2485–2496 (2011).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
[CrossRef]

Phys. Status Solidi C (1)

E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Fabrication and optimization of rugate filters based on porous silicon,” Phys. Status Solidi C 2, 3227–3231 (2005).
[CrossRef]

Semicond. Sci. Technol. (1)

C. Bittencourt, R. Landers, E. Liobet, X. Correig, and J. Calderer, “The role of oxygen partial pressure and annealing temperature on the formation of W = O bonds in thin WO3 films,” Semicond. Sci. Technol. 17, 522–525 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

A. Subrahmanyam and A. Karuppasamy, “Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films,” Sol. Energy Mater. Sol. Cells 91, 266–274 (2007).
[CrossRef]

B. Baloukas, J.-M. Lamarre, and L. Martinu, “Electrochromic interference filters fabricated from dense and porous tungsten oxides films,” Sol. Energy Mater. Sol. Cells 95, 807–815 (2011).
[CrossRef]

Thin Solid Films (1)

G. Beydaghyan, G. Bader, and P. Ashrit, “Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films,” Thin Solid Films 516, 1646–1650 (2008).
[CrossRef]

Other (1)

H. A. Macleod, Thin-film Optical filters, 4th ed. (CRC Press, 2010), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Variation of refractive index at 600 nm with total deposition pressure.

Fig. 2.
Fig. 2.

Transmission spectra of three single-material optical filters made from dense and porous WO3. The solid, dashed, and dotted lines correspond to an index contrast of 0.17, 0.12, and 0.08, respectively.

Fig. 3.
Fig. 3.

Dependence of the transmission spectra of WO3 optical filters on the total number of layers. The solid and dashed lines correspond to a total of 13 and 9 layers, respectively. The index contrast is 0.17 in both cases.

Fig. 4.
Fig. 4.

Approximation of a sine-wave index profile modulation. The vertical axis shows the values of the deposition pressure that correspond to a refractive index varying from 1.87 (high pressure) to 2.04 (low pressure).

Fig. 5.
Fig. 5.

Transmission spectrum of a 9-period rugate (solid line) as compared with a similar 9-period standard quarter-wave filter (dashed line). The main feature is the disappearance of the harmonic stop band located at the first odd fractional wavelength.

Fig. 6.
Fig. 6.

Approximation of a sine-wave index profile with a variable amplitude. The figure seems upside down because low deposition pressures correspond to a high refractive index.

Fig. 7.
Fig. 7.

Transmission spectrum of a 15-period rugate (solid line) as compared with a similar 15-period standard quarter-wave filter (dashed line). The main feature is the sidelobes attenuation in the low wavelength part of the spectrum when a variable amplitude sine-wave index profile is used.

Metrics