Abstract

An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  2. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
    [CrossRef]
  3. C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
    [CrossRef]
  4. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
    [CrossRef]
  5. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22, 816–818 (1997).
    [CrossRef]
  6. I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).
  7. A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
    [CrossRef]
  8. N. Ingle and S. K. Mohanty, “Development of a two-photon polymerization and optical tweezers microscope for fabrication and manipulation of microstructures,” Proc. SPIE 7950, 795006 (2011).
    [CrossRef]
  9. E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
    [CrossRef]
  10. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 85–87.
  11. R. C. Gauthier and S. Wallace, “Optical levitation of spheres: analytical development and numerical computations of the force equations,” J. Opt. Soc. Am. B 12, 1680–1686 (1995).
    [CrossRef]
  12. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997).
    [CrossRef]
  13. A. Oeder, S. Stoebenau, and S. Sinzinger, “Optimized free-form optical trapping systems,” Opt. Lett. 37, 274–276 (2012).
    [CrossRef]
  14. S. M. Block, “Constructing optical tweezers,” in Cell Biology, Vol. 3 (Cold Spring Harbor, 1998), Sec. 11.
  15. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283 (1971).
    [CrossRef]
  16. LT Ultra Precision Technology GmbH, Aftholderberg, Wiesenstrasse 9,D-88634 Herdwangen-Schönach, http://www.lt-ultra.com/ .
  17. R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
    [CrossRef]
  18. M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48, 6143–6151 (2009).
    [CrossRef]
  19. T. Li, “Fundamental tests of physics with optically trapped microspheres,” Ph.D. dissertation (University of Texas at Austin, 2011).
  20. M. Michihata, T. Yoshikane, T. Hayashi, and Y. Takaya, “New technique of single-beam gradient-force laser trapping in air condition,” in International Symposium on Optomechatronic Technologies (ISOT, 2012).

2013 (1)

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

2012 (4)

E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
[CrossRef]

A. Oeder, S. Stoebenau, and S. Sinzinger, “Optimized free-form optical trapping systems,” Opt. Lett. 37, 274–276 (2012).
[CrossRef]

2011 (3)

N. Ingle and S. K. Mohanty, “Development of a two-photon polymerization and optical tweezers microscope for fabrication and manipulation of microstructures,” Proc. SPIE 7950, 795006 (2011).
[CrossRef]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[CrossRef]

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

2009 (1)

2008 (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[CrossRef]

1997 (2)

1995 (1)

1986 (1)

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Ashkin, A.

A. Ashkin, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Baudelet, M.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[CrossRef]

S. M. Block, “Constructing optical tweezers,” in Cell Biology, Vol. 3 (Cold Spring Harbor, 1998), Sec. 11.

Bürger, E.

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

Butler, C.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

Deak, A.

A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Fardad, S.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

Farre, A.

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[CrossRef]

Feldmann, J.

A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
[CrossRef]

Füßl, R.

E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Gauthier, R. C.

Grewe, A.

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

Hausotte, T.

E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Hayashi, T.

M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48, 6143–6151 (2009).
[CrossRef]

M. Michihata, T. Yoshikane, T. Hayashi, and Y. Takaya, “New technique of single-beam gradient-force laser trapping in air condition,” in International Symposium on Optomechatronic Technologies (ISOT, 2012).

Ingle, N.

N. Ingle and S. K. Mohanty, “Development of a two-photon polymerization and optical tweezers microscope for fabrication and manipulation of microstructures,” Proc. SPIE 7950, 795006 (2011).
[CrossRef]

Jäger, G.

E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Kampmann, R.

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

Kleindienst, R.

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

Kobayashi, T.

Li, T.

T. Li, “Fundamental tests of physics with optically trapped microspheres,” Ph.D. dissertation (University of Texas at Austin, 2011).

Lopez-Quesada, C.

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Lutich, A. A.

A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
[CrossRef]

Manske, E.

E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Martin-Badosa, E.

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Mas, J.

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Michihata, M.

M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48, 6143–6151 (2009).
[CrossRef]

M. Michihata, T. Yoshikane, T. Hayashi, and Y. Takaya, “New technique of single-beam gradient-force laser trapping in air condition,” in International Symposium on Optomechatronic Technologies (ISOT, 2012).

Mohanty, S. K.

N. Ingle and S. K. Mohanty, “Development of a two-photon polymerization and optical tweezers microscope for fabrication and manipulation of microstructures,” Proc. SPIE 7950, 795006 (2011).
[CrossRef]

Montes-Usategui, M.

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[CrossRef]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[CrossRef]

Oeder, A.

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

A. Oeder, S. Stoebenau, and S. Sinzinger, “Optimized free-form optical trapping systems,” Opt. Lett. 37, 274–276 (2012).
[CrossRef]

Ohlinger, A.

A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
[CrossRef]

Omori, R.

Richardson, M.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

Sincore, A.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

Sinzinger, S.

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

A. Oeder, S. Stoebenau, and S. Sinzinger, “Optimized free-form optical trapping systems,” Opt. Lett. 37, 274–276 (2012).
[CrossRef]

Stoebenau, S.

Suzuki, A.

Takaya, Y.

M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48, 6143–6151 (2009).
[CrossRef]

M. Michihata, T. Yoshikane, T. Hayashi, and Y. Takaya, “New technique of single-beam gradient-force laser trapping in air condition,” in International Symposium on Optomechatronic Technologies (ISOT, 2012).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 85–87.

Vangheluwe, M.

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

Verdeny, I.

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Wallace, S.

Yoshikane, T.

M. Michihata, T. Yoshikane, T. Hayashi, and Y. Takaya, “New technique of single-beam gradient-force laser trapping in air condition,” in International Symposium on Optomechatronic Technologies (ISOT, 2012).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

E. Manske, G. Jäger, T. Hausotte, and R. Füßl, “Recent developments and challenges of nanopositioning and nanomeasuring technology,” Meas. Sci. Technol. 23, 074001 (2012).
[CrossRef]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008).
[CrossRef]

Nat. Photonics (1)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5, 318–321 (2011).
[CrossRef]

Opt. Lett. (3)

Opt. Pura Apl. (1)

I. Verdeny, A. Farre, J. Mas, C. Lopez-Quesada, E. Martin-Badosa, and M. Montes-Usategui, “Optical trapping: a review of essential concepts,” Opt. Pura Apl. 44, 527–551 (2011).

Phys. Rev. Lett. (1)

A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, “Optically trapped gold nanoparticle enables listening at the microscale,” Phys. Rev. Lett. 108, 018101 (2012).
[CrossRef]

Proc. SPIE (3)

N. Ingle and S. K. Mohanty, “Development of a two-photon polymerization and optical tweezers microscope for fabrication and manipulation of microstructures,” Proc. SPIE 7950, 795006 (2011).
[CrossRef]

C. Butler, S. Fardad, A. Sincore, M. Vangheluwe, M. Baudelet, and M. Richardson, “Multispectral optical tweezers for molecular diagnostics of single biological cells,” Proc. SPIE 8225, 82250C (2012).
[CrossRef]

R. Kampmann, R. Kleindienst, A. Grewe, A. Oeder, E. Bürger, and S. Sinzinger, “Optimized systems for energy efficient optical tweezing,” Proc. SPIE 8637, 863714 (2013).
[CrossRef]

Other (5)

T. Li, “Fundamental tests of physics with optically trapped microspheres,” Ph.D. dissertation (University of Texas at Austin, 2011).

M. Michihata, T. Yoshikane, T. Hayashi, and Y. Takaya, “New technique of single-beam gradient-force laser trapping in air condition,” in International Symposium on Optomechatronic Technologies (ISOT, 2012).

LT Ultra Precision Technology GmbH, Aftholderberg, Wiesenstrasse 9,D-88634 Herdwangen-Schönach, http://www.lt-ultra.com/ .

S. M. Block, “Constructing optical tweezers,” in Cell Biology, Vol. 3 (Cold Spring Harbor, 1998), Sec. 11.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 85–87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic drawing of the forces resulting on a spherical particle (a), and the minimization of the scattering force vector by appropriately shaping the incident intensity distribution (b).

Fig. 2.
Fig. 2.

Starting system for the optical trapping system (a) and the corresponding axial force simulations for three different working distances (b).

Fig. 3.
Fig. 3.

Ultraprecision diamond turned optical elements [parabolic ring mirror front (a) and back (b) and refractive double axicon (c)].

Fig. 4.
Fig. 4.

Measured and normalized caustic of the double axicon and the parabolic ring mirror (a), simulated axial trapping forces of the measured caustic (red and green curves) and the design data (black curve) (b).

Fig. 5.
Fig. 5.

Schematic drawing (a) and photographic picture (b) of the optical setup for trapping particles in air. The infrared (IR) laser source is used for trapping particles and the green (VIS) laser source only for illumination to observe trapped particles. The telescope (L1 & L2) with a pinhole (PH) for spatial filtering reduces the beam diameter before passing the optical tweezer with its refractive double axicon (DA), the parabolic ring mirror (PM), and the test chamber (PR). The observation is realized by a CMOS-camera (CMOS), a microscope objective (MO), and an infrared filter (IR-F) to suppress scattered IR radiation.

Fig. 6.
Fig. 6.

Side view on the optical trap. The particles fall through the caustic of the trapping beam and become visible.

Fig. 7.
Fig. 7.

Sequence of 9 frames with a distance of 100 ms. Frames (a–c): trapping of a particle (solid arrow); frames (d–i): holding a particle (solid arrow) and passing particles (dotted arrow).

Fig. 8.
Fig. 8.

Visualization of three different trapping positions and enlargement of the trapping positions on the upper right.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F⃗=i=1ndF⃗l=i=1nj=1nIi(x,y,z)λ0dAihc[TRj1hn2λ0(k⃗r⃗r)+T2R2hn2λ0(k⃗n1n2r⃗t)].

Metrics