K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).

[Crossref]

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).

[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).

[Crossref]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540 nm,” Appl. Phys. B, 79, 45–50 (2004).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).

[Crossref]

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540 nm,” Appl. Phys. B, 79, 45–50 (2004).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).

[Crossref]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540 nm,” Appl. Phys. B, 79, 45–50 (2004).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).

[Crossref]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability less than or equal to 6.3×10−16 in 1 s,” Opt. Lett. 27, 58–60 (2002).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).

[Crossref]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540 nm,” Appl. Phys. B, 79, 45–50 (2004).

[Crossref]

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).

[Crossref]

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).

[Crossref]

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).

[Crossref]

W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).

[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).

[Crossref]

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).

[Crossref]

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540 nm,” Appl. Phys. B, 79, 45–50 (2004).

[Crossref]

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).

[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).

[Crossref]

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).

[Crossref]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540 nm,” Appl. Phys. B, 79, 45–50 (2004).

[Crossref]

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).

[Crossref]

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).

[Crossref]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).

[Crossref]

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).

[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).

[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).

[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).

[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).

[Crossref]

J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).

[Crossref]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).

[Crossref]

S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability less than or equal to 6.3×10−16 in 1 s,” Opt. Lett. 27, 58–60 (2002).

[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37, 638–640 (2012).

[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).

[Crossref]

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).

[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).

[Crossref]