Abstract

We demonstrate that using appropriate signal-processing techniques allows us to greatly improve the signal-to-noise ratio and accuracy of frequency comb interference spectroscopy measurements. We show that the phase noise from the continuous wave laser used as local oscillator is common to all beat notes and can be removed, enabling longer coherent integration time. An on-line calibration of the spectrum normalizes the frequency response of the electronics. The signal power-to-noise ratio of the spectra thus obtained is a factor of 16,000 (42 dB) higher than in previously demonstrated results, and the quality of the spectra is much higher.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
    [CrossRef]
  2. S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability less than or equal to 6.3×10−16 in 1  s,” Opt. Lett. 27, 58–60 (2002).
    [CrossRef]
  3. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).
    [CrossRef]
  4. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
    [CrossRef]
  5. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [CrossRef]
  6. M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
    [CrossRef]
  7. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
    [CrossRef]
  8. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
    [CrossRef]
  9. K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
    [CrossRef]
  10. K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).
    [CrossRef]
  11. C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
    [CrossRef]
  12. P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
    [CrossRef]
  13. J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18, 23358–23370 (2010).
    [CrossRef]
  14. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
    [CrossRef]
  15. J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).
    [CrossRef]
  16. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15  bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
    [CrossRef]
  17. A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
    [CrossRef]
  18. M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).
    [CrossRef]
  19. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [CrossRef]
  20. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
    [CrossRef]

2013 (1)

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).
[CrossRef]

2012 (3)

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[CrossRef]

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).
[CrossRef]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

2011 (1)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

2010 (2)

2009 (2)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15  bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[CrossRef]

2008 (5)

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[CrossRef]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16, 4347–4365 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).
[CrossRef]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

2004 (1)

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
[CrossRef]

2003 (1)

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

2002 (1)

2000 (1)

1999 (1)

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

1973 (1)

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).
[CrossRef]

Balslev-Clausen, D.

Baumann, E.

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Bernard, J. E.

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
[CrossRef]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Coddington, I.

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15  bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[CrossRef]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).
[CrossRef]

Czajkowski, A.

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
[CrossRef]

Dennis, T.

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

Deschênes, J. D.

Diddams, S. A.

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability less than or equal to 6.3×10−16 in 1  s,” Opt. Lett. 27, 58–60 (2002).
[CrossRef]

Dorrer, C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

Genest, J.

Gerginov, V.

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Giaccari, P.

Giaccarri, P.

Gilbert, S. L.

Giorgetta, F. R.

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Hollberg, L.

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Kilper, D. C.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

Kirchner, M. S.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Ma, L. S.

Madej, A. A.

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
[CrossRef]

McClellan, J.

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).
[CrossRef]

Newbury, N. R.

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15  bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[CrossRef]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).
[CrossRef]

Nicholson, J. W.

Nikodem, M.

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Parks, T. W.

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).
[CrossRef]

Peer, A.

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Picqu, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Rabiner, L.

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).
[CrossRef]

Raybon, G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

Raymer, M. G.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

Reichert, J.

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Robertsson, L.

Sakai, O.

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).
[CrossRef]

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[CrossRef]

Saucier, P.

Stalnaker, J. E.

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Stowe, M. C.

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Stuart, H. R.

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

Swann, W.

Swann, W. C.

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15  bits of resolution,” Opt. Lett. 34, 2153–2155 (2009).
[CrossRef]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).
[CrossRef]

W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
[CrossRef]

Thorpe, M. J.

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Tremblay, P.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Urabe, K.

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).
[CrossRef]

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[CrossRef]

Williams, P. A.

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

Windeler, R. S.

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
[CrossRef]

Wysocki, G.

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).
[CrossRef]

Ye, J.

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Zolot, A. M.

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43  THz,” Opt. Lett. 37, 638–640 (2012).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

M. C. Stowe, M. J. Thorpe, A. Peer, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, “Direct frequency comb spectroscopy,” Adv. At. Mol. Opt. Phys. 55, 1–60 (2008).
[CrossRef]

Ann. NY Acad. Sci. (1)

M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy—new capabilities in laser chemical sensing,” Ann. NY Acad. Sci. 1260, 101–111 (2012).
[CrossRef]

Appl. Phys. B (1)

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, “Absolute frequency measurement of acetylene transitions in the region of 1540  nm,” Appl. Phys. B, 79, 45–50 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

K. Urabe and O. Sakai, “Absorption spectroscopy using interference between optical frequency comb and single-wavelength laser,” Appl. Phys. Lett. 101, 051105 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Dorrer, D. C. Kilper, H. R. Stuart, G. Raybon, and M. G. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15, 1746–1748 (2003).
[CrossRef]

P. A. Williams, T. Dennis, I. Coddington, W. C. Swann, and N. R. Newbury, “Vector signal characterization of high-speed optical components by use of linear optical sampling with milliradian resolution,” IEEE Photon. Technol. Lett. 20, 2007–2009 (2008).
[CrossRef]

IEEE Trans. Audio Electroacoust. (1)

J. McClellan, T. W. Parks, and L. Rabiner, “A computer program for designing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust. 21, 506–526 (1973).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqu, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2009).
[CrossRef]

Opt. Commun. (1)

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (2)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84, 062513 (2011).
[CrossRef]

K. Urabe and O. Sakai, “Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser,” Phys. Rev. A 88, 023856 (2013).
[CrossRef]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 13902 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. Solid lines are optical fibers; split into the fibers are fiber couplers; and dashed lines are electrical coaxial cables. BPF, optical bandpass filter; DL, optical delay line; PC, polarization controller.

Fig. 2.
Fig. 2.

Spectrum of one beating mode before (blue) and after (green) phase correction. Resolution bandwidth is 5 kHz. The noise floor is additive noise from the oscilloscope’s front-end. The linewidth of the beat signal is dominated by the CW laser’s frequency noise at around 500 kHz. After phase correction, all the beat signal’s energy becomes concentrated in a single transform-limited narrow peak.

Fig. 3.
Fig. 3.

Beat spectra obtained using the phase-corrected DFT. Each subfigure contains 11 overlaid measurements of 400 μs each. (a) shows the power spectrum of the calibration path (blue) and the measurement path (green), while (b) shows the spectral phase of both signals. (c) and (d) are the result of normalizing the contents of (a) and (b), respectively. The frequency axis is given relative to the comb mode closest to the CW laser.

Fig. 4.
Fig. 4.

Measured transmittance profile and Voigt fit. In (a), the solid dots are the measured transmittance values of the 11 measurements; the red solid trace is the Voigt profile fit; and the x’s are the residual, offset for clarity. In (b), each point corresponds to the average residual of the 11 measurements, and the errors bars denote the four standard deviations range on each spectral bin. The frequency axis has an offset corresponding to the frequency of the comb mode closest to the CW laser, which was not measured in this work.

Metrics