Abstract

In a triangular path cyclic interferometer employing a polarizing beam splitter (PBS), the two counterpropagating beams are orthogonally polarized. A sample placed almost equidistant from the PBS is imaged by a lens placed in the path of the emerging beams so that two defocused images of the sample are recorded on a CCD. Using a linear polarizer in the path of the orthogonally polarized imaging beams, it is possible to achieve amplitude subtraction between the two images, resulting in an edge-enhanced image of the sample. The proposed real-time edge-enhancement technique is experimentally demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), p. 218.
  2. R. W. Lewis, “Real-time coherent optical edge enhancement,” Appl. Opt. 17, 161–162 (1978).
    [CrossRef]
  3. H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiology,” Med. Phys. 26, 648–652 (1999).
    [CrossRef]
  4. A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
    [CrossRef]
  5. M. Storrs, D. J. Mehrl, and J. F. Walkup, “Programmable spatial filtering with bacteriorhodopsin,” Appl. Opt. 35, 4632–4636 (1996).
    [CrossRef]
  6. C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888 (2008).
    [CrossRef]
  7. F. T. Yu, S. Jutamulia, and X. L. Huang, “Experimental application of low-cost liquid crystal TV to white light optical image processing,” Appl. Opt. 25, 3324–3326 (1986).
    [CrossRef]
  8. T. K. Acharya, K. Bhattacharya, and A. Ghosh, “High frequency enhancement using a birefringent-based spatial filter,” J. Mod. Opt. 41, 979–986 (1994).
    [CrossRef]
  9. A. Montes-Perez, C. Meneses-Fabian, and G. Rodriguez-Zurita, “Isotropic edge-enhancement by the Hilbert-transform in optical tomography of phase objects,” Opt. Express 19, 5350–5356 (2011).
    [CrossRef]
  10. J. F. Ebersole, “Optical image subtraction,” Opt. Eng. 14, 145436 (1975).
    [CrossRef]
  11. A. Ghosh and A. K. Chakraborty, “High frequency enhancement using birefringent lens,” Opt. Commun. 40, 329–331 (1982).
    [CrossRef]
  12. J. A. Ferrari and J. L. Flores, “Nondirectional edge-enhancement by contrast reverted low-pass Fourier filtering,” Appl. Opt. 49, 3291–3296 (2010).
    [CrossRef]
  13. X. Lin, J. Ohtsubo, and T. Takemori, “Real-time optical image subtraction and edge enhancement using ferroelectric liquid-crystal devices based on speckle modulation,” Appl. Opt. 35, 3148–3154 (1996).
    [CrossRef]

2011 (1)

2010 (1)

2008 (1)

C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888 (2008).
[CrossRef]

2001 (1)

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

1999 (1)

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiology,” Med. Phys. 26, 648–652 (1999).
[CrossRef]

1996 (2)

1994 (1)

T. K. Acharya, K. Bhattacharya, and A. Ghosh, “High frequency enhancement using a birefringent-based spatial filter,” J. Mod. Opt. 41, 979–986 (1994).
[CrossRef]

1986 (1)

1982 (1)

A. Ghosh and A. K. Chakraborty, “High frequency enhancement using birefringent lens,” Opt. Commun. 40, 329–331 (1982).
[CrossRef]

1978 (1)

1975 (1)

J. F. Ebersole, “Optical image subtraction,” Opt. Eng. 14, 145436 (1975).
[CrossRef]

Acharya, T. K.

T. K. Acharya, K. Bhattacharya, and A. Ghosh, “High frequency enhancement using a birefringent-based spatial filter,” J. Mod. Opt. 41, 979–986 (1994).
[CrossRef]

Bhattacharya, K.

T. K. Acharya, K. Bhattacharya, and A. Ghosh, “High frequency enhancement using a birefringent-based spatial filter,” J. Mod. Opt. 41, 979–986 (1994).
[CrossRef]

Chakraborty, A. K.

A. Ghosh and A. K. Chakraborty, “High frequency enhancement using birefringent lens,” Opt. Commun. 40, 329–331 (1982).
[CrossRef]

DeCristofano, B. S.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Ebersole, J. F.

J. F. Ebersole, “Optical image subtraction,” Opt. Eng. 14, 145436 (1975).
[CrossRef]

Fajardo, L. L.

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiology,” Med. Phys. 26, 648–652 (1999).
[CrossRef]

Ferrari, J. A.

Flores, J. L.

Ghosh, A.

T. K. Acharya, K. Bhattacharya, and A. Ghosh, “High frequency enhancement using a birefringent-based spatial filter,” J. Mod. Opt. 41, 979–986 (1994).
[CrossRef]

A. Ghosh and A. K. Chakraborty, “High frequency enhancement using birefringent lens,” Opt. Commun. 40, 329–331 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), p. 218.

Huang, X. L.

Jutamulia, S.

Kimball, B. R.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Kothapalli, S.-R.

C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888 (2008).
[CrossRef]

Lewis, R. W.

Lin, X.

Liu, H.

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiology,” Med. Phys. 26, 648–652 (1999).
[CrossRef]

Mehrl, D. J.

Meneses-Fabian, C.

Montes-Perez, A.

Nakashima, M.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Ohtsubo, J.

Panchangam, A.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Rao, D. V. G. L. N.

C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888 (2008).
[CrossRef]

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Rodriguez-Zurita, G.

Sastry, K. V. L. N.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Storrs, M.

Takemori, T.

Walkup, J. F.

Xu, J.

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiology,” Med. Phys. 26, 648–652 (1999).
[CrossRef]

Yelleswarapu, C. S.

C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888 (2008).
[CrossRef]

Yu, F. T.

Appl. Opt. (5)

J. Mod. Opt. (1)

T. K. Acharya, K. Bhattacharya, and A. Ghosh, “High frequency enhancement using a birefringent-based spatial filter,” J. Mod. Opt. 41, 979–986 (1994).
[CrossRef]

Med. Phys. (2)

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiology,” Med. Phys. 26, 648–652 (1999).
[CrossRef]

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real-time optical Fourier processing,” Med. Phys. 28, 22–28 (2001).
[CrossRef]

Opt. Commun. (2)

C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876–1888 (2008).
[CrossRef]

A. Ghosh and A. K. Chakraborty, “High frequency enhancement using birefringent lens,” Opt. Commun. 40, 329–331 (1982).
[CrossRef]

Opt. Eng. (1)

J. F. Ebersole, “Optical image subtraction,” Opt. Eng. 14, 145436 (1975).
[CrossRef]

Opt. Express (1)

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), p. 218.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic of the cyclic interferometer setup. The symbols are explained in the text. The relative orientations of the “s” and “p” polarization states with respect to the chosen coordinate axes of the output beams and the transmission axis of the polarizer P(θ) are shown in the inset.

Fig. 2.
Fig. 2.

Experimental results.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f(x,y,z1)=o(x,y)*h(x,y,z1),
f′′(x,y,z2)=o(x,y)*h(x,y,z2).
ε=f(x,y,z1)(10)+f(x,y,z2)(01)=(f(x,y,z1)f(x,y,z2)),
ε=(cos2θsinθcosθsinθcosθsin2θ)(f(x,y,z1)f(x,y,z2))=[f(x,y,z1)cosθ+f(x,y,z2)sinθ](cosθcosθ),
ε=12[f(x,y,z1)f(x,y,z2)](11).
ε=[f(x,y,z1)f(x,y,z2)]=o(x,y)h(x,y,z1)o(x,y)h(x,y,z2)=o(x,y){h(x,y,z1)h(x,y,z2)}=o(x,y)Δh.
I(x,y)=|O(x,y)Δh(x,y)|2.
I(u,v)=[O(u,v)ΔH][O*(u,v)ΔH*],

Metrics