Abstract

The angle of optical rotation was measured by detecting the phase difference between clockwise and counterclockwise circular polarized light that propagated in a sensing loop. This polarimeter, or glucose sensor, consisted of a Sagnac interference optical system with a polarization-maintaining optical fiber, so it was not affected by the control limitations of the polarization rotation angle or the optical power fluctuation that occurs with scattered light, reflection, or polarization rotation in an optical system. The angle of rotation was measured from the phase difference of the glucose sensor when the concentration of glucose was changed. We confirmed that the resolution of optical rotation was 5×104deg, and the resolution of the glucose concentration was 1mg/dl accordingly. The measured specific rotation of glucose was mostly equal to a physical property value. One applications of this glucose sensor is in measuring the blood sugar levels of diabetic patients.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
    [CrossRef]
  2. M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).
  3. H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
    [CrossRef]
  4. T. Kumagai, T. Yuhara, and H. Kajioka, “Development of mass-produced fiber-optic gyroscopes and their commercial applications,” Rev. Laser Eng. 26, 304–309 (1998).
    [CrossRef]
  5. T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
    [CrossRef]
  6. B. Culshaw and I. P. Giles, “Fiber optic gyroscopes,” J. Phys. E 16, 5–15 (1983).
    [CrossRef]
  7. S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).
  8. T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
    [CrossRef]
  9. K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).
  10. S. Ezekiel and H. J. Arditty, “Fiber-optic rotation sensors,” in Fiber-Optic Rotation Sensors and Related Technologies, Vol. 32 of Springer-Verlag Series in Optical Sciences (Springer-Verlag, 1982), pp. 2–26.

2013

T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
[CrossRef]

2012

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

2006

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

2005

M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).

1998

T. Kumagai, T. Yuhara, and H. Kajioka, “Development of mass-produced fiber-optic gyroscopes and their commercial applications,” Rev. Laser Eng. 26, 304–309 (1998).
[CrossRef]

1996

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

1995

T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
[CrossRef]

1989

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

1983

B. Culshaw and I. P. Giles, “Fiber optic gyroscopes,” J. Phys. E 16, 5–15 (1983).
[CrossRef]

Akagi, M.

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

Araki, H.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Arditty, H. J.

S. Ezekiel and H. J. Arditty, “Fiber-optic rotation sensors,” in Fiber-Optic Rotation Sensors and Related Technologies, Vol. 32 of Springer-Verlag Series in Optical Sciences (Springer-Verlag, 1982), pp. 2–26.

Culshaw, B.

B. Culshaw and I. P. Giles, “Fiber optic gyroscopes,” J. Phys. E 16, 5–15 (1983).
[CrossRef]

Endo, T.

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

Ezekiel, S.

S. Ezekiel and H. J. Arditty, “Fiber-optic rotation sensors,” in Fiber-Optic Rotation Sensors and Related Technologies, Vol. 32 of Springer-Verlag Series in Optical Sciences (Springer-Verlag, 1982), pp. 2–26.

Giles, I. P.

B. Culshaw and I. P. Giles, “Fiber optic gyroscopes,” J. Phys. E 16, 5–15 (1983).
[CrossRef]

Hara, H.

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

Hase, S.

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

Hayashiya, H.

T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
[CrossRef]

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

Hino, M.

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

Ishizawa, H.

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

Kajioka, H.

T. Kumagai, T. Yuhara, and H. Kajioka, “Development of mass-produced fiber-optic gyroscopes and their commercial applications,” Rev. Laser Eng. 26, 304–309 (1998).
[CrossRef]

T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
[CrossRef]

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Koyama, S.

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

Kumagai, T.

T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
[CrossRef]

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

T. Kumagai, T. Yuhara, and H. Kajioka, “Development of mass-produced fiber-optic gyroscopes and their commercial applications,” Rev. Laser Eng. 26, 304–309 (1998).
[CrossRef]

T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
[CrossRef]

Kurosawa, K.

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

Makino, J.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Masuda, I.

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

Miyauchi, Y.

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

Nemoto, H.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Nishida, K.

T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
[CrossRef]

Ohnuki, W.

T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
[CrossRef]

Oho, S.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Okabayashi, S.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Sakamoto, K.

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

Soekawa, H.

T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
[CrossRef]

Sonobe, H.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

Tezuka, S.

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

Yamaguchi, I.

M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).

Yamashita, T.

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

Yokota, M.

M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).

Yoneyama, N.

M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).

Yoshida, S.

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

Yoshino, T.

M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).

Yuhara, T.

T. Kumagai, T. Yuhara, and H. Kajioka, “Development of mass-produced fiber-optic gyroscopes and their commercial applications,” Rev. Laser Eng. 26, 304–309 (1998).
[CrossRef]

T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
[CrossRef]

IEEJ Trans. EIS

H. Hayashiya, T. Kumagai, T. Endo, S. Hase, M. Akagi, and M. Hino, “Development of optical fiber current transformer for DC railway power systems,” IEEJ Trans. EIS 216, 736–743 (2006).
[CrossRef]

IEEJ Trans. SM

Y. Miyauchi, H. Ishizawa, S. Koyama, S. Tezuka, and H. Hara, “Development of the glucose measuring system using confocal optical system,” IEEJ Trans. SM 132, 431–436 (2012).
[CrossRef]

T. Kumagai, W. Ohnuki, H. Hayashiya, and K. Nishida, “Interferometric fiber-optic electric current sensor for railway power systems,” IEEJ Trans. SM 133, 42–47 (2013).
[CrossRef]

IEICE Trans.

S. Oho, H. Sonobe, J. Makino, H. Araki, H. Kajioka, H. Nemoto, and S. Okabayashi, “An experimental study on optical fiber gyroscopes for automotive applications,” IEICE Trans. J72-C-II, 811–819 (1989).

J. Circuits Syst. Comput.

T. Yuhara, T. Kumagai, H. Soekawa, and H. Kajioka, “Fiber-optic gyroscopes for automotive applications,” J. Circuits Syst. Comput. 5, 17–36 (1995).
[CrossRef]

J. Phys. E

B. Culshaw and I. P. Giles, “Fiber optic gyroscopes,” J. Phys. E 16, 5–15 (1983).
[CrossRef]

Jpn. J. Opt.

M. Yokota, N. Yoneyama, I. Yamaguchi, and T. Yoshino, “Study on a polarimeter using a Faraday rotator with flint glass fiber,” Jpn. J. Opt. 34, 97–102 (2005).

Rev. Laser Eng.

T. Kumagai, T. Yuhara, and H. Kajioka, “Development of mass-produced fiber-optic gyroscopes and their commercial applications,” Rev. Laser Eng. 26, 304–309 (1998).
[CrossRef]

Trans. IEE Jpn.

K. Kurosawa, S. Yoshida, K. Sakamoto, I. Masuda, and T. Yamashita, “A current sensor using the Faraday effect in optical fiber manufactured from flint glass,” Trans. IEE Jpn. 116-B, 93–103 (1996).

Other

S. Ezekiel and H. J. Arditty, “Fiber-optic rotation sensors,” in Fiber-Optic Rotation Sensors and Related Technologies, Vol. 32 of Springer-Verlag Series in Optical Sciences (Springer-Verlag, 1982), pp. 2–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Configuration of optical rotation measurement system with a Sagnac interferometer.

Fig. 2.
Fig. 2.

Configuration of signal processing electronics.

Fig. 3.
Fig. 3.

Signal output from preamplifier.

Fig. 4.
Fig. 4.

Phase difference Δθ and linearity to input current at different temperatures.

Fig. 5.
Fig. 5.

Phase difference Δθ output when applying a phase difference ±0.001deg to an optical system by supplying electric current of ±1A.

Fig. 6.
Fig. 6.

Configuration of glucose concentration measurement system.

Fig. 7.
Fig. 7.

Setup for measuring glucose.

Fig. 8.
Fig. 8.

Concentration measurement to obtain specific rotations.

Fig. 9.
Fig. 9.

Resolution of phase difference and optical rotation.

Fig. 10.
Fig. 10.

Optical system in which a 2-mm-wide measurement cell was inserted between the optical elements.

Fig. 11.
Fig. 11.

Optical rotation measurement when the concentration of glucose solution in the 2-mm-wide measurement cell was changed.

Fig. 12.
Fig. 12.

Signal output from the preamplifier when CW and CCW circular polarized light interfered through the human body.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δθ=2ΔΦ.
τ=nl0c0,
P(t)=K{1+vcos[Δθ+φecos(2πfmt)]},
φe=2φmsin(πfmt).
S(2n1)=2KvJ(2n1)(φe)sin(Δθ),
S(2n)=2KvJ(2n)(φe)cos(Δθ),
Δθ=tan1(mx0),
m=J2(φe)J1(φe).
y0=S4S2=J4(φe)J2(φe),
ΔΦ=Δθ2.
Δθ=2VNI.
α0=100ΔΦ(ld0).
ΔΦ=ld0α0100.
δθ=π(nphηDTav)1/2,
ηph=P0λ0h0c0,

Metrics