Abstract

This paper presents a different approach to classify self-mixing (SM) signals operating in the moderate feedback regime. A total of six distinct classes of SM signals can be defined based on the SM inherent shapes, which depend on both the feedback factor C and the linewidth enhancement factor α. This classification allows clear identification of SM signals for which normalization issues can arise and thus for which displacement precision is inherently reduced due to the very nature of the signal itself. Finally, it is shown that phase unwrapping approaches can theoretically retrieve displacement with subnanometer precision for usual laser diodes in the moderate feedback regime, in the absence of noise, only for α values greater than approximately 4.3.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393417 (2012).
    [CrossRef]
  2. D. M. Cane and K. A. Shore, eds., Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductors Lasers (Wiley, 2005).
  3. R. Teysseyre, F. Bony, J. Perchoux, and T. Bosch, “Laser dynamics in sawtooth-like self-mixing signals,” Opt. Lett. 37, 3771–3773 (2012).
    [CrossRef]
  4. S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
    [CrossRef]
  5. U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sens. J. 13, 824–831 (2013).
    [CrossRef]
  6. A. Magnani, A. Pesatori, and M. Norgia, “Self-mixing vibrometer with real-time digital signal elaboration,” Appl. Opt. 51, 5318–5325 (2012).
    [CrossRef]
  7. Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
    [CrossRef]
  8. L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
    [CrossRef]
  9. R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
    [CrossRef]
  10. U. Zabit, O. Bernal, and T. Bosch, “Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor,” IEEE Sens. J. 13, 2200–2207 (2013).
    [CrossRef]
  11. G. Martini, E. Randone, and S. Donati, “Very low frequency self-mixing laser diode vibrometer,” in IEEE Sensors 2012 (IEEE, 2012), pp. 1–4.
  12. J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
    [CrossRef]
  13. Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16, 990–992 (2004).
    [CrossRef]
  14. W. Zhao, H. Ye, and Y. Yu, “Design of measurement algorithm of feedback strength factor of optical feedback self-mixing interferometry systems based on system generator,” in Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (Atlantis, 2013).
  15. M. Norgia and A. Pesatori, “Fully analog self-mixing laser vibrometer,” in IEEE Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2011), pp. 1–4.
  16. C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
    [CrossRef]
  17. Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011).
    [CrossRef]
  18. O. D. Bernal, U. Zabit, and T. Bosch, “Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing,” IEEE Sens. J. 13, 4962–4971 (2013).
    [CrossRef]
  19. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  20. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
    [CrossRef]
  21. C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
    [CrossRef]
  22. A. Doncescu, C. Bes, and T. Bosch, “Displacement estimation with an optical feedback interferometer using an evolutionary algorithm,” in IEEE Sensors 2007 (IEEE, 2007), pp. 382–386.
  23. G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005).
    [CrossRef]
  24. J. von Staden, T. Gensty, and W. Elser, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett. 31, 2574–2576 (2006).
    [CrossRef]
  25. N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
    [CrossRef]

2014

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[CrossRef]

2013

U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sens. J. 13, 824–831 (2013).
[CrossRef]

O. D. Bernal, U. Zabit, and T. Bosch, “Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing,” IEEE Sens. J. 13, 4962–4971 (2013).
[CrossRef]

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor,” IEEE Sens. J. 13, 2200–2207 (2013).
[CrossRef]

2012

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393417 (2012).
[CrossRef]

A. Magnani, A. Pesatori, and M. Norgia, “Self-mixing vibrometer with real-time digital signal elaboration,” Appl. Opt. 51, 5318–5325 (2012).
[CrossRef]

R. Teysseyre, F. Bony, J. Perchoux, and T. Bosch, “Laser dynamics in sawtooth-like self-mixing signals,” Opt. Lett. 37, 3771–3773 (2012).
[CrossRef]

2011

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011).
[CrossRef]

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

2008

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

2007

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

2006

J. von Staden, T. Gensty, and W. Elser, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett. 31, 2574–2576 (2006).
[CrossRef]

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

2005

G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005).
[CrossRef]

J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
[CrossRef]

2004

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16, 990–992 (2004).
[CrossRef]

1995

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

1980

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Akikusa, N.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Atashkhooei, R.

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

Belloeil, V.

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

Bernal, O.

U. Zabit, O. Bernal, and T. Bosch, “Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor,” IEEE Sens. J. 13, 2200–2207 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sens. J. 13, 824–831 (2013).
[CrossRef]

Bernal, O. D.

O. D. Bernal, U. Zabit, and T. Bosch, “Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing,” IEEE Sens. J. 13, 4962–4971 (2013).
[CrossRef]

Bes, C.

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005).
[CrossRef]

A. Doncescu, C. Bes, and T. Bosch, “Displacement estimation with an optical feedback interferometer using an evolutionary algorithm,” in IEEE Sensors 2007 (IEEE, 2007), pp. 382–386.

Bony, F.

Bosch, T.

O. D. Bernal, U. Zabit, and T. Bosch, “Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing,” IEEE Sens. J. 13, 4962–4971 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sens. J. 13, 824–831 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor,” IEEE Sens. J. 13, 2200–2207 (2013).
[CrossRef]

R. Teysseyre, F. Bony, J. Perchoux, and T. Bosch, “Laser dynamics in sawtooth-like self-mixing signals,” Opt. Lett. 37, 3771–3773 (2012).
[CrossRef]

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005).
[CrossRef]

J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
[CrossRef]

A. Doncescu, C. Bes, and T. Bosch, “Displacement estimation with an optical feedback interferometer using an evolutionary algorithm,” in IEEE Sensors 2007 (IEEE, 2007), pp. 382–386.

Chicharo, J.

J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
[CrossRef]

Chicharo, J. F.

Dean, P.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Donati, S.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[CrossRef]

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393417 (2012).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16, 990–992 (2004).
[CrossRef]

G. Martini, E. Randone, and S. Donati, “Very low frequency self-mixing laser diode vibrometer,” in IEEE Sensors 2012 (IEEE, 2012), pp. 1–4.

Doncescu, A.

A. Doncescu, C. Bes, and T. Bosch, “Displacement estimation with an optical feedback interferometer using an evolutionary algorithm,” in IEEE Sensors 2007 (IEEE, 2007), pp. 382–386.

Edamura, T.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Elser, W.

Fan, Y.

Gensty, T.

Giles Davies, A.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Giuliani, G.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16, 990–992 (2004).
[CrossRef]

Gourinat, Y.

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

Gui, H.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

Harrison, P.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Ikonic, Z.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Indjin, D.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Ishihara, M.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Kasahara, K.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Khanna, S. P.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Kliese, R.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Kumzaki, N.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Lachab, M.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Leng Lim, Y.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Linfield, E. H.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Lu, L.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

Magnani, A.

Martini, G.

G. Martini, E. Randone, and S. Donati, “Very low frequency self-mixing laser diode vibrometer,” in IEEE Sensors 2012 (IEEE, 2012), pp. 1–4.

Nikolic, M.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Norgia, M.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[CrossRef]

A. Magnani, A. Pesatori, and M. Norgia, “Self-mixing vibrometer with real-time digital signal elaboration,” Appl. Opt. 51, 5318–5325 (2012).
[CrossRef]

M. Norgia and A. Pesatori, “Fully analog self-mixing laser vibrometer,” in IEEE Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2011), pp. 1–4.

Perchoux, J.

Pesatori, A.

A. Magnani, A. Pesatori, and M. Norgia, “Self-mixing vibrometer with real-time digital signal elaboration,” Appl. Opt. 51, 5318–5325 (2012).
[CrossRef]

M. Norgia and A. Pesatori, “Fully analog self-mixing laser vibrometer,” in IEEE Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2011), pp. 1–4.

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

Plantier, G.

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005).
[CrossRef]

Rakic, A. D.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Randone, E.

G. Martini, E. Randone, and S. Donati, “Very low frequency self-mixing laser diode vibrometer,” in IEEE Sensors 2012 (IEEE, 2012), pp. 1–4.

Riba, J.-R.

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

Romeral, L.

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

Royo, S.

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

Takagi, Y.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Teysseyre, R.

Urresty, J.-C.

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

Valavanis, A.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

von Staden, J.

Wilson, S. J.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

Xi, J.

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011).
[CrossRef]

J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
[CrossRef]

Yang, B.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

Ye, H.

W. Zhao, H. Ye, and Y. Yu, “Design of measurement algorithm of feedback strength factor of optical feedback self-mixing interferometry systems based on system generator,” in Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (Atlantis, 2013).

Yu, B.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

Yu, Y.

Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011).
[CrossRef]

J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16, 990–992 (2004).
[CrossRef]

W. Zhao, H. Ye, and Y. Yu, “Design of measurement algorithm of feedback strength factor of optical feedback self-mixing interferometry systems based on system generator,” in Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (Atlantis, 2013).

Zabit, U.

U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sens. J. 13, 824–831 (2013).
[CrossRef]

O. D. Bernal, U. Zabit, and T. Bosch, “Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing,” IEEE Sens. J. 13, 4962–4971 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor,” IEEE Sens. J. 13, 2200–2207 (2013).
[CrossRef]

Zhang, W.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

Zhao, W.

W. Zhao, H. Ye, and Y. Yu, “Design of measurement algorithm of feedback strength factor of optical feedback self-mixing interferometry systems based on system generator,” in Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (Atlantis, 2013).

Zhou, J.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Leng Lim, P. Dean, M. Nikolic, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonic, P. Harrison, E. H. Linfield, A. Giles Davies, S. J. Wilson, and A. D. Rakic, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011).
[CrossRef]

IEEE J. Quantum Electron.

J. Xi, Y. Yu, J. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005).
[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Top. Quantum Electron. 20, 6900108 (2014).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16, 990–992 (2004).
[CrossRef]

IEEE Sens. J.

L. Lu, W. Zhang, B. Yang, J. Zhou, H. Gui, and B. Yu, “Dual-channel self-mixing vibration measurement system in a linear cavity fiber laser,” IEEE Sens. J. 13, 4387–4392 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Design and analysis of an embedded accelerometer coupled self-mixing laser displacement sensor,” IEEE Sens. J. 13, 2200–2207 (2013).
[CrossRef]

U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sens. J. 13, 824–831 (2013).
[CrossRef]

O. D. Bernal, U. Zabit, and T. Bosch, “Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing,” IEEE Sens. J. 13, 4962–4971 (2013).
[CrossRef]

IEEE Trans. Instrum. Meas.

C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006).
[CrossRef]

IEEE/ASME Trans. Mechatron.

C. Bes, V. Belloeil, G. Plantier, Y. Gourinat, and T. Bosch, “A self-mixing laser sensor design with an extended Kalman filter for optimal online structural analysis and damping evaluation,” IEEE/ASME Trans. Mechatron. 12, 387–394 (2007).
[CrossRef]

R. Atashkhooei, J.-C. Urresty, S. Royo, J.-R. Riba, and L. Romeral, “Runout tracking in electric motors using self-mixing interferometry,” IEEE/ASME Trans. Mechatron. 19(1), 1–7 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

N. Kumzaki, Y. Takagi, M. Ishihara, K. Kasahara, N. Akikusa, and T. Edamura, “First direct observation of small linewidth enhancement factor of fabryperot quantum cascade laser,” Jpn. J. Appl. Phys. 47, 1606–1608 (2008).
[CrossRef]

Laser Photon. Rev.

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393417 (2012).
[CrossRef]

Opt. Lett.

Other

D. M. Cane and K. A. Shore, eds., Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductors Lasers (Wiley, 2005).

A. Doncescu, C. Bes, and T. Bosch, “Displacement estimation with an optical feedback interferometer using an evolutionary algorithm,” in IEEE Sensors 2007 (IEEE, 2007), pp. 382–386.

G. Martini, E. Randone, and S. Donati, “Very low frequency self-mixing laser diode vibrometer,” in IEEE Sensors 2012 (IEEE, 2012), pp. 1–4.

W. Zhao, H. Ye, and Y. Yu, “Design of measurement algorithm of feedback strength factor of optical feedback self-mixing interferometry systems based on system generator,” in Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (Atlantis, 2013).

M. Norgia and A. Pesatori, “Fully analog self-mixing laser vibrometer,” in IEEE Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2011), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Transfer function xF(t)=F[x0(t);C,α] with hysteresis (C=3 and α=2) and k is an even integer.

Fig. 2.
Fig. 2.

Graphical representation of the normalized power Pn of an SM signal for C=3 and α=2, its corresponding xF, and displacement D(t).

Fig. 3.
Fig. 3.

(a) 3D graphical representation of the phase value xF after the rising discontinuity xF,RΦ versus (C;α). (b) 2D graphical representation of the phase value xF before the rising discontinuity xF,R versus (C;α). (c) The rising discontinuity xF,RΦ versus (C;α) for (C;α)([1,10];[0,10]).

Fig. 4.
Fig. 4.

(a) Contour plot of Fig. 3 obtained for xF,RΦ=0 as a function of (C,α). (b) Contour plot of Fig. 3 obtained for xF,RΦ=π as a function of (C,α).

Fig. 5.
Fig. 5.

(a) 3D graphical representation of the phase value xF after the rising discontinuity xF,FΦ versus (C;α). (b) 2D graphical representation of the phase value xF before the falling discontinuity xF,F versus (C;α). (c) After the falling discontinuity xF,FΦ versus (C;α) for (C;α)([1,10];[0,10]).

Fig. 6.
Fig. 6.

(a) Graphical solution of xF,FΦ=π as a function of (C,α). (b) Graphical solution of xF,FΦ=0 as a function of (C,α).

Fig. 7.
Fig. 7.

Graphical representation of the different SM classes as a function of (C,α).

Fig. 8.
Fig. 8.

Graphical representation of SM signals pertaining to the six different classes: Class I, C=1.1 and α=4; Class II, C=1.3 and α=1.5; Class III, C=3 and α=4; Class IV, C=4 and α=1.5; Class V, C=1.3 and α=0.5; Class VI, C=9 and α=0.2.

Fig. 9.
Fig. 9.

Graphical representation of the phase error δx0 as a function of C for α=2 (dotted), α=3 (dashed), and α=4 (solid).

Fig. 10.
Fig. 10.

Simulated SM signals P1(t) of (a) class III and (c) P2(t) of class IV and their corresponding displacement reconstruction errors (b) ϵ1(t) and (e) ϵ2(t) for (C,α)=(2,2) and (C,α)=(4,2), respectively. For λ0=800nm and a sinusoidal displacement amplitude of 4 μm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D(t)=D0+d(t),
x0(t)=xF(t)+Csin[xF(t)+atan(α)]=G[xF(t),C,α],
P(t)=P0{1+mcos[xF(t)]},
H[xF,C,α]=G[xFatan(α),C,α]atan(α).
ΔΦR=F[x0,R(k);C;α]xF,RΦF[x0,R(k);C;α]xF,R,
ΔΦF=F[x0,F(k);C;α]xF,FΦF[x0,F(k);C;α]xF,F.
xF,R=kπatan(α)+β,
xF,F=(k+2)πatan(α)β,
xF,R>0[2π](C,α)([1;10];[0;10]).
α>C21forC[1;10].
δx0=δxF,F(1+Ccos(xF,F+atan(α)))(δxF,F)22Csin(xF,F+atan(α)),
δxF,F=πatan(α)acos(1C).

Metrics