Abstract

The inadequate laser-induced damage threshold (LIDT) of optical elements limits the future development of high-power laser systems. With the aim of raising the LIDT, the elastic passivating treatment mechanism and parameter optimization of a combined magnetorheological finishing (MRF) and HF etching process are investigated. The relationships among the width/depth ratio of defects and parameters of the passivating treatment process (MRF and HF etching), relative intensity (RI), and LIDT of fused silica (FS) optics are revealed through a set of simulations and experiments. For high-efficiency improvement of LIDT, in an elastic passivating treatment process, scratches or other defects need not be wiped off entirely, but only passivated or enlarged to an acceptable profile. This combined process can be applied in polishing high-power-laser-irradiated components with high efficiency, low damage, and high LIDT. A 100mm×100mm×10mm FS optic window is treated, and the width/depth ratio rises from 3 to 11, RI decreases from 4 to 1.2, and LIDT is improved from 7.8 to 17.8J/cm2 after 385 min of MRF elastic polishing and 60 min of HF etching. Comparing this defect-carrying sample to the defect-free one, the MRF polishing time is shortened, obviously, from 1100 to 385 min, and the LIDT is merely decreased from 19.4 to 17.8J/cm2. Due to the optimized technique, the fabricating time was shortened by a factor of 2.6, while the LIDT decreased merely 8.2%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. I. Suratwala, “Optical fabrication and post processing techniques for improving laser damage resistance of fused silica optics,” in Optical Fabrication and Testing, Jackson Hole, Wyoming, June13–17, 2010 (Optical Society of America, 2010), paper OWA1.
  2. Y. Li, Modern Optical Manufacture Engineering (Science, 2009), pp. 218–219.
  3. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
    [CrossRef]
  4. J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
    [CrossRef]
  5. Y. Mori, K. Yamamura, and K. Endo, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
    [CrossRef]
  6. A. Schindler, “Tutorial on recent advances in ion beam and plasma jet processing,” in Optical Fabrication and Testing, Monterey, California, June24–28, 2012 (Optical Society of America, 2012), paper OW4D.1.
  7. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
    [CrossRef]
  8. W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt. 50, 1984–1994 (2011).
    [CrossRef]
  9. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
  10. J. A. Menapace, “Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems,” Proc. SPIE 7842, 78421W (2010).
    [CrossRef]
  11. L. Shengyi and D. Yifan, New Technology for Manufacturing and Measurement of Large and Middle-scale Aspheric Surfaces (National Defense Industry, 2011).
  12. C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585–2594 (2009).
    [CrossRef]
  13. F. Shi, “Study on the key techniques of magneto-rheological finishing for high-precision optical surfaces,” Ph.D. dissertation (National University of Defense Technology, 2009).
  14. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
    [CrossRef]
  15. L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
    [CrossRef]
  16. M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.
  17. S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
    [CrossRef]
  18. C. Kuanneng, “FDTD analysis on influence of micro-nano surface on near field light intensity distribution in KDP crystal,” Master’s thesis (Harbin Institute of Technology, 2010).
  19. Z. Chunlin and L. Chunming, “Research on the field distribution influence of shape and position of defects,” Acta Physica Sinica 61, 164207 (2012).
  20. A. R. Von Hippel, Dielectrics and Waves (Artech House, 1995).
  21. G. Debiao and Y. Yubo, FDTD Method for Electromagnetic Waves (Xidian University, 2002), pp. 35–40.
  22. W. Yi, Research on Mechanism and Techniques about Subsurface Defects Induced Damage, Ph.D. dissertation (China Academy of Engineering Physics, 2005).

2012 (1)

Z. Chunlin and L. Chunming, “Research on the field distribution influence of shape and position of defects,” Acta Physica Sinica 61, 164207 (2012).

2011 (2)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt. 50, 1984–1994 (2011).
[CrossRef]

2010 (2)

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

J. A. Menapace, “Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems,” Proc. SPIE 7842, 78421W (2010).
[CrossRef]

2009 (2)

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585–2594 (2009).
[CrossRef]

2008 (1)

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

2006 (1)

2005 (1)

Y. Mori, K. Yamamura, and K. Endo, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

2004 (1)

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

1990 (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

Baker, H. J.

Borden, M. R.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

Campbell, J. H.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Chunlin, Z.

Z. Chunlin and L. Chunming, “Research on the field distribution influence of shape and position of defects,” Acta Physica Sinica 61, 164207 (2012).

Chunming, L.

Z. Chunlin and L. Chunming, “Research on the field distribution influence of shape and position of defects,” Acta Physica Sinica 61, 164207 (2012).

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

Debiao, G.

G. Debiao and Y. Yubo, FDTD Method for Electromagnetic Waves (Xidian University, 2002), pp. 35–40.

Endo, K.

Y. Mori, K. Yamamura, and K. Endo, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

Gorodkin, S.

Hackel, R. P.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Hall, D. R.

Hawley-Fedder, R. A.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Jacobs, S. D.

Kordonski, W.

Kuanneng, C.

C. Kuanneng, “FDTD analysis on influence of micro-nano surface on near field light intensity distribution in KDP crystal,” Master’s thesis (Harbin Institute of Technology, 2010).

Lambropoulos, J. C.

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

Li, Y.

Y. Li, Modern Optical Manufacture Engineering (Science, 2009), pp. 218–219.

Menapace, J.

Menapace, J. A.

J. A. Menapace, “Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems,” Proc. SPIE 7842, 78421W (2010).
[CrossRef]

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Mendez, E.

Miao, C.

Mici, J.

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

Mori, Y.

Y. Mori, K. Yamamura, and K. Endo, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

Nowak, K. M.

Papernov, S.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

Riley, M. O.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Runkel, M.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Schindler, A.

A. Schindler, “Tutorial on recent advances in ion beam and plasma jet processing,” in Optical Fabrication and Testing, Monterey, California, June24–28, 2012 (Optical Society of America, 2012), paper OW4D.1.

Schmid, A. W.

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

Shafrir, S. N.

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

Shengyi, L.

L. Shengyi and D. Yifan, New Technology for Manufacturing and Measurement of Large and Middle-scale Aspheric Surfaces (National Defense Industry, 2011).

Shi, F.

F. Shi, “Study on the key techniques of magneto-rheological finishing for high-precision optical surfaces,” Ph.D. dissertation (National University of Defense Technology, 2009).

Steele, R. A.

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

Stolz, C. J.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Suratwala, T.

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

T. I. Suratwala, “Optical fabrication and post processing techniques for improving laser damage resistance of fused silica optics,” in Optical Fabrication and Testing, Jackson Hole, Wyoming, June13–17, 2010 (Optical Society of America, 2010), paper OWA1.

Villarreal, F. J.

Von Hippel, A. R.

A. R. Von Hippel, Dielectrics and Waves (Artech House, 1995).

Whitman, P. K.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Wong, L.

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture induced sub-absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010).
[CrossRef]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

Wren Carr, C.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

Yamamura, K.

Y. Mori, K. Yamamura, and K. Endo, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Yi, W.

W. Yi, Research on Mechanism and Techniques about Subsurface Defects Induced Damage, Ph.D. dissertation (China Academy of Engineering Physics, 2005).

Yifan, D.

L. Shengyi and D. Yifan, New Technology for Manufacturing and Measurement of Large and Middle-scale Aspheric Surfaces (National Defense Industry, 2011).

Yu, J.

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Yubo, Y.

G. Debiao and Y. Yubo, FDTD Method for Electromagnetic Waves (Xidian University, 2002), pp. 35–40.

Acta Physica Sinica (1)

Z. Chunlin and L. Chunming, “Research on the field distribution influence of shape and position of defects,” Acta Physica Sinica 61, 164207 (2012).

Appl. Opt. (3)

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. Wren Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).

J. Cryst. Growth (1)

Y. Mori, K. Yamamura, and K. Endo, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

J. Non-Cryst. Solids (2)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
[CrossRef]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. A. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355, 797–810 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

S. Papernov and A. W. Schmid, “Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation,” Proc. SPIE 7132, 71321J (2008).
[CrossRef]

J. A. Menapace, “Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems,” Proc. SPIE 7842, 78421W (2010).
[CrossRef]

J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. K. Whitman, J. Yu, M. Runkel, M. O. Riley, M. D. Feit, and R. P. Hackel, “NIF optical materials and fabrication technologies: an overview,” in Proc. SPIE 5341, 84–101 (2004).
[CrossRef]

Other (10)

L. Shengyi and D. Yifan, New Technology for Manufacturing and Measurement of Large and Middle-scale Aspheric Surfaces (National Defense Industry, 2011).

F. Shi, “Study on the key techniques of magneto-rheological finishing for high-precision optical surfaces,” Ph.D. dissertation (National University of Defense Technology, 2009).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Boulder Damage Symposium, Boulder, Colorado, September21, 2009.

A. Schindler, “Tutorial on recent advances in ion beam and plasma jet processing,” in Optical Fabrication and Testing, Monterey, California, June24–28, 2012 (Optical Society of America, 2012), paper OW4D.1.

C. Kuanneng, “FDTD analysis on influence of micro-nano surface on near field light intensity distribution in KDP crystal,” Master’s thesis (Harbin Institute of Technology, 2010).

A. R. Von Hippel, Dielectrics and Waves (Artech House, 1995).

G. Debiao and Y. Yubo, FDTD Method for Electromagnetic Waves (Xidian University, 2002), pp. 35–40.

W. Yi, Research on Mechanism and Techniques about Subsurface Defects Induced Damage, Ph.D. dissertation (China Academy of Engineering Physics, 2005).

T. I. Suratwala, “Optical fabrication and post processing techniques for improving laser damage resistance of fused silica optics,” in Optical Fabrication and Testing, Jackson Hole, Wyoming, June13–17, 2010 (Optical Society of America, 2010), paper OWA1.

Y. Li, Modern Optical Manufacture Engineering (Science, 2009), pp. 218–219.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

MRF polishing process and samples.

Fig. 2.
Fig. 2.

Profiles of defects on Sample 1.

Fig. 3.
Fig. 3.

(a) Morphology of defect pits on Sample 2: initially (left) and after MRF polishing (right). (b) Profile evolution of defect pits on Sample 2.

Fig. 4.
Fig. 4.

Morphology of defect pits in each stage on Sample 3: initially (a), after MRF polishing (b), and after HF etching (c).

Fig. 5.
Fig. 5.

Profile evolution of defect pits in Sample 3: defect pit 3 (a), defect pit 4 (b), and defect pit 5 (c).

Fig. 6.
Fig. 6.

Scratch model and the distribution of electronic field intensity.

Fig. 7.
Fig. 7.

RI values of different scratches.

Fig. 8.
Fig. 8.

(a) RI evolution of MRF defect pits 1 and 2. 8. (b) RI evolution of defect pit 5.

Fig. 9.
Fig. 9.

MRF and HF integrated process decreases the RI of defect pits.

Fig. 10.
Fig. 10.

Laser damage test system.

Tables (7)

Tables Icon

Table 1. Experimental Scheme

Tables Icon

Table 2. Parameters of the MRF Process

Tables Icon

Table 3. Parameters of the HF Etching Process

Tables Icon

Table 4. Width/Depth Ratio Evolution on Sample 3

Tables Icon

Table 5. Parameters of Simulation

Tables Icon

Table 6. Test Parameters

Tables Icon

Table 7. LIDT Test Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RI=ImaxI0,

Metrics