Abstract

The inadequate laser-induced damage threshold (LIDT) of optical elements limits the future development of high-power laser systems. With the aim of raising the LIDT, the elastic passivating treatment mechanism and parameter optimization of a combined magnetorheological finishing (MRF) and HF etching process are investigated. The relationships among the width/depth ratio of defects and parameters of the passivating treatment process (MRF and HF etching), relative intensity (RI), and LIDT of fused silica (FS) optics are revealed through a set of simulations and experiments. For high-efficiency improvement of LIDT, in an elastic passivating treatment process, scratches or other defects need not be wiped off entirely, but only passivated or enlarged to an acceptable profile. This combined process can be applied in polishing high-power-laser-irradiated components with high efficiency, low damage, and high LIDT. A 100mm×100mm×10mm FS optic window is treated, and the width/depth ratio rises from 3 to 11, RI decreases from 4 to 1.2, and LIDT is improved from 7.8 to 17.8J/cm2 after 385 min of MRF elastic polishing and 60 min of HF etching. Comparing this defect-carrying sample to the defect-free one, the MRF polishing time is shortened, obviously, from 1100 to 385 min, and the LIDT is merely decreased from 19.4 to 17.8J/cm2. Due to the optimized technique, the fabricating time was shortened by a factor of 2.6, while the LIDT decreased merely 8.2%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription