Abstract

A specific imaging spectrometer based on a concentric off-axis dual reflector system is proposed, free of astigmatism and coma. The described imaging spectrometer consists of four spherical mirrors and a plane grating. The analytic theory of aberrations and the optical path-length concept are used to derive the astigmatism elimination and coma removal. It is shown that the astigmatism in these imaging spectrometers is eliminated by characterizing three angles, and the coma is corrected when unequal mirror radii are configured in collimating and condensing optics. The developed aberration principle is verified by comparing the performance of the astigmatism-eliminated spectrometer with the spectrometer which has neither astigmatism nor coma.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
    [CrossRef]
  2. F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
    [CrossRef]
  3. R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
    [CrossRef]
  4. S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
    [CrossRef]
  5. L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
    [CrossRef]
  6. L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
    [CrossRef]
  7. R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
    [CrossRef]
  8. M. Czerny and A. F. Turner, “On the astigmatism of mirror spectrometers,” Z. Phys. 61, 792–797 (1930).
    [CrossRef]
  9. A. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the Czerny–Turner spectrometer,” J. Opt. Soc. Am. 54, 879–887 (1964).
    [CrossRef]
  10. J. Reader, “Optimizing Czerny-Turner spectrographs: a comparison between analytic theory and ray tracing,” J. Opt. Soc. Am. 59, 1189–1196 (1969).
    [CrossRef]
  11. M. Futamata, T. Takenouchi, and K. Katakura, “Highly efficient and aberration-corrected spectrometer for advanced Raman spectroscopy,” Appl. Opt. 41, 4655–4665 (2002).
    [CrossRef]
  12. L. Xu, K. Chen, Q. He, and G. Jin, “Design of freeform mirrors in Czerny–Turner spectrometers to suppress astigmatism,” Appl. Opt. 48, 2871–2879 (2009).
    [CrossRef]
  13. B. Bates, M. McDowell, and A. C. Newton, “Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination,” J. Phys. E 3, 206–210 (1970).
    [CrossRef]
  14. M. L. Dalton, “Astigmatism compensation in the Czerny–Turner spectrometer,” Appl. Opt. 5, 1121–1123 (1966).
    [CrossRef]
  15. M. McDowell, “Design of Czerny–Turner spectrographs using divergent grating illumination,” Opt. Acta 22, 473–475 (1975).
    [CrossRef]
  16. K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
    [CrossRef]
  17. G. R. Rosendahl, “Contributions to the optics of mirror systems and gratings with oblique incidence. III. Some applications,” J. Opt. Soc. Am. 52, 412–415 (1962).
    [CrossRef]
  18. M. Goto and S. Morita, “Spatial distribution measurement of atomic radiation with an astigmatism-corrected Czerny–Turner type spectrometer in the Large Helical Device,” Rev. Sci. Instrum. 77, 10F124 (2006).
  19. M. D. Mouriz, E. L. Lago, X. Prieto-Blanco, H. González-Núñez, and R. de la Fuente, “Schwarzschild spectrometer,” Appl. Opt. 50, 2418–2424 (2011).
    [CrossRef]
  20. D. J. Schroeder, Astronomical Optics (Academic, 2000), Chap. 5, pp. 70–111.
  21. S. Chang and A. Prata, “Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes,” J. Opt. Soc. Am. A 22, 2454–2464 (2005).
    [CrossRef]
  22. W. B. Wetherell and M. P. Rimmer, “General analysis of aplanatic Cassegrain, Gregorian, and Schwarzschild telescopes,” Appl. Opt. 11, 2817–2832 (1972).
    [CrossRef]

2011 (1)

2010 (1)

2009 (1)

2006 (1)

M. Goto and S. Morita, “Spatial distribution measurement of atomic radiation with an astigmatism-corrected Czerny–Turner type spectrometer in the Large Helical Device,” Rev. Sci. Instrum. 77, 10F124 (2006).

2005 (2)

S. Chang and A. Prata, “Geometrical theory of aberrations near the axis in classical off-axis reflecting telescopes,” J. Opt. Soc. Am. A 22, 2454–2464 (2005).
[CrossRef]

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

2004 (1)

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

2002 (1)

1997 (1)

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

1994 (1)

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

1993 (1)

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

1992 (1)

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

1986 (1)

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

1975 (1)

M. McDowell, “Design of Czerny–Turner spectrographs using divergent grating illumination,” Opt. Acta 22, 473–475 (1975).
[CrossRef]

1972 (1)

1970 (1)

B. Bates, M. McDowell, and A. C. Newton, “Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination,” J. Phys. E 3, 206–210 (1970).
[CrossRef]

1969 (1)

1966 (1)

1964 (1)

1962 (1)

1930 (1)

M. Czerny and A. F. Turner, “On the astigmatism of mirror spectrometers,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Bates, B.

B. Bates, M. McDowell, and A. C. Newton, “Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination,” J. Phys. E 3, 206–210 (1970).
[CrossRef]

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

Chang, S.

Chen, K.

Christensen, A. B.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Czerny, M.

M. Czerny and A. F. Turner, “On the astigmatism of mirror spectrometers,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Dalton, M. L.

Daniell, R. E.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Darlington, E. H.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

de la Fuente, R.

DeMajistre, R.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Droppleman, L.

Dymond, K. F.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

Fountain, G. H.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Fritz, G. G.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

Futamata, M.

Gardner, R. R.

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Gary, S. A.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Goldsten, J. O.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

González-Núñez, H.

Goto, M.

M. Goto and S. Morita, “Spatial distribution measurement of atomic radiation with an astigmatism-corrected Czerny–Turner type spectrometer in the Large Helical Device,” Rev. Sci. Instrum. 77, 10F124 (2006).

Habraken, S.

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

Hardin, D. A.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

He, Q.

Huffman, R. E.

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Humm, D. C.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Hutchins, R. A.

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Jamar, C.

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

Jin, G.

Katakura, K.

Kayser, D. C.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Kil, H.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Kusnierkiewicz, D. Y.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Lago, E. L.

Lampton, M. L.

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

Larrabee, J. C.

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Lee, K. S.

Lee, S. C.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Linstrom, L. A.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Maynard, J. J.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Mccoy, R. P.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

McDowell, M.

M. McDowell, “Design of Czerny–Turner spectrographs using divergent grating illumination,” Opt. Acta 22, 473–475 (1975).
[CrossRef]

B. Bates, M. McDowell, and A. C. Newton, “Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination,” J. Phys. E 3, 206–210 (1970).
[CrossRef]

Megill, L. R.

Meier, R. R.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

Mende, S. B.

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

Meng, C.-I.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Morita, S.

M. Goto and S. Morita, “Spatial distribution measurement of atomic radiation with an astigmatism-corrected Czerny–Turner type spectrometer in the Large Helical Device,” Rev. Sci. Instrum. 77, 10F124 (2006).

Morrill, J. S.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Morrison, D.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Mouriz, M. D.

Newton, A. C.

B. Bates, M. McDowell, and A. C. Newton, “Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination,” J. Phys. E 3, 206–210 (1970).
[CrossRef]

Ogorzalek, B.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Ogorzalek, B. S.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Paxton, L. J.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Peacock, K.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Persons, D. F.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Picone, J. M.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Pranke, J. B.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Prata, A.

Prieto-Blanco, X.

Reader, J.

Regeon, P. A.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

Rimmer, M. P.

Rochus, P.

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

Rolland, J. P.

Rosendahl, G. R.

Schenkel, F. W.

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Schroeder, D. J.

D. J. Schroeder, Astronomical Optics (Academic, 2000), Chap. 5, pp. 70–111.

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

Shafer, A. B.

Smith, B. E.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Straus, P. R.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Strickland, D. J.

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

Takenouchi, T.

Thompson, K. P.

Thonnard, S. E.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

Turner, A. F.

M. Czerny and A. F. Turner, “On the astigmatism of mirror spectrometers,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Wetherell, W. B.

Wolfram, K. D.

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Wolven, B.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Xu, L.

Zhang, Y.

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

Appl. Opt. (5)

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Phys. E (1)

B. Bates, M. McDowell, and A. C. Newton, “Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination,” J. Phys. E 3, 206–210 (1970).
[CrossRef]

Opt. Acta (1)

M. McDowell, “Design of Czerny–Turner spectrographs using divergent grating illumination,” Opt. Acta 22, 473–475 (1975).
[CrossRef]

Opt. Eng. (2)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602 (2005).
[CrossRef]

R. P. Mccoy, R. R. Meier, K. D. Wolfram, J. M. Picone, S. E. Thonnard, G. G. Fritz, J. S. Morrill, D. A. Hardin, A. B. Christensen, D. C. Kayser, J. B. Pranke, and P. R. Straus, “Far-ultraviolet imaging spectrograph and scanning grating spectrometers for the Remote Atmospheric and Ionospheric Detection System,” Opt. Eng. 33, 430–437 (1994).
[CrossRef]

Opt. Express (1)

Proc. SPIE (5)

S. Habraken, C. Jamar, P. Rochus, S. B. Mende, and M. L. Lampton, “Optical design of the FUV spectrographic imager for the IMAGE mission,” Proc. SPIE 3114, 544–553 (1997).
[CrossRef]

L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B. Ogorzalek, D. C. Humm, J. O. Goldsten, R. DeMajistre, and C.-I. Meng, “GUVI: a hyperspectral imager for geospace,” Proc. SPIE 5660, 228–240 (2004).
[CrossRef]

L. J. Paxton, C.-I. Meng, G. H. Fountain, B. S. Ogorzalek, E. H. Darlington, S. A. Gary, J. O. Goldsten, D. Y. Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock, D. F. Persons, B. E. Smith, D. J. Strickland, and R. E. Daniell, “SSUSI: horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters,” Proc. SPIE 1761, 161–177 (1993).
[CrossRef]

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, and P. A. Regeon, “A far and extreme ultraviolet limb imaging spectrograph for the DMSP satellites,” Proc. SPIE 1745, 310–321 (1992).
[CrossRef]

F. W. Schenkel, B. S. Ogorzalek, R. R. Gardner, R. A. Hutchins, R. E. Huffman, and J. C. Larrabee, “Simultaneous multi-spectral narrow band auroral imagery from space (1150A to 6300A),” Proc. SPIE 687, 90–103 (1986).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Goto and S. Morita, “Spatial distribution measurement of atomic radiation with an astigmatism-corrected Czerny–Turner type spectrometer in the Large Helical Device,” Rev. Sci. Instrum. 77, 10F124 (2006).

Z. Phys. (1)

M. Czerny and A. F. Turner, “On the astigmatism of mirror spectrometers,” Z. Phys. 61, 792–797 (1930).
[CrossRef]

Other (1)

D. J. Schroeder, Astronomical Optics (Academic, 2000), Chap. 5, pp. 70–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of optical path for spectrometer based on a concentric off-axis dual reflector system.

Fig. 2.
Fig. 2.

Optical path length by the spherical mirror; both the object distance r and the image distance r are measured along the chief ray; the incidence angle α is positive for clockwise rotation of the light.

Fig. 3.
Fig. 3.

Concentric off-axis dual reflector system; primary mirror is convex; secondary mirror is concave; the aperture stop at the grating position in the spectrometer is displaced from the first mirror.

Fig. 4.
Fig. 4.

Relationships between infinitesimal length of the primary mirror local coordinates and secondary mirror local coordinates.

Fig. 5.
Fig. 5.

Projection of the plane grating width for collimating optics and focusing optics.

Fig. 6.
Fig. 6.

Structural schematic of spectrometer based on concentric off-axis dual reflector system; the common center of curvature of the first two mirrors is located at C1; the common center of curvature of the last two mirrors is located at C2; the grating center is located at V.

Fig. 7.
Fig. 7.

Block diagram for calculating optical parameters of the spectrometer.

Fig. 8.
Fig. 8.

Optimized layout of the spectrometer based on a concentric off-axis dual reflector system.

Fig. 9.
Fig. 9.

RMS spot radius versus wavelength for three different fields with two configurations for each: initial spectrometer with astigmatism eliminated (red triangles), initial spectrometer with astigmatism and coma eliminated (green circles), optimized spectrometer with astigmatism eliminated (blue asterisk), optimized spectrometer with astigmatism and coma eliminated (cyan star). (a) On-axis field. (b) 0.7 field. (c) Full field.

Fig. 10.
Fig. 10.

Coma coefficient W131(xa) versus the radius of the third mirror R3: W131(xa) defined by the product of wavefront coefficient W131 and the grating transfer coefficient.

Fig. 11.
Fig. 11.

Spot diagram of three fields for three different configurations: (a) R2=200, R3=350, F=5, coma coefficient W131(xa): 9.463 wave; (b) R2=200, R3=105, F=5, coma coefficient W131(xa): 1.233 wave; (c) R2=200, R3=187.54, F=5, coma coefficient W131(xa): 0.0675 wave.

Fig. 12.
Fig. 12.

RMS spot radius versus slit height for three different wavelengths in the spectrometer free of astigmatism and coma: 120 nm (short-dashed curve), and 150 nm (medium-dashed curve) and 180 nm (long-dashed curve).

Fig. 13.
Fig. 13.

Relative illumination in Y dimension (along the spectral dimension of the detector) for different spectral lines: (a) 148.7 and 150 nm, spectral interval 1.3 nm; (b) 148.35 and 150 nm, spectral interval 1.7 nm.

Fig. 14.
Fig. 14.

MTF of the optimized spectrometer free of astigmatism and coma at the central and marginal wavelengths: (a) 120 nm, (b) 150 nm, (c) 180 nm.

Tables (2)

Tables Icon

Table 1. Optical Parameters of the Spectrometera

Tables Icon

Table 2. Spectral Coverage and Linear Dispersion for Different Gratings

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

OPL=AP+AP=r+r+A1x2+A1y2+A2x3+A2xy2+A3(x2+y2)2,
A1=12(cos2αr+cos2αr2cosαR),
A1=12(1r+1r2cosαR),
A2=12[sinαr(cos2αrcosαR)sinαr(cos2αrcosαR)],
A2=12[sinαr(1rcosαR)sinαr(1rcosαR)],
A3=18[1R2(1r+1r2cosαR)1r(1rcosαR)21r(1rcosαR)2].
Rpsinαs=dpssinω=Rssinαp,
αp=αs+ω.
1rt=2Rcosα1rt,
1rs=2cosαR1rs.
r2t=r1tdps,
r2s=r1sdps.
r2t=Rpsinαpcosαs(sinω+sinαpcosαs)2sinωsinαs,
r2s=Rpsinαp(sinαs2cosαpsinω)2sinωsinαscosω.
Δr=r2sr2t=Rpsinαp[tanω212(1tanαp+1tanαs)].
1tanαp+1tanαs+1tanω=0.
tan2ω=2(tanαp+tanαs),
tanω=tanαp21+5+4tanαp21+tanαp2.
A2=1Rsinα(cosαr1R).
TTC=rsxs(A2pxp3A2sxs3),
ATC=xs(A2pxp3A2sxs3).
xpxa=1cosαp,
x1x2=rprs,
xpx1=1cosαp,
x2xs=cos(αs).
xpxs=rprscosαscosαp.
xs=xsxpxp,
xp=xpxaxa.
ATC=3xs(A2pxp2xpxsA2sxs2)=3[A2p(xpxa)2xa2xpxsA2s(xsxpxpxa)2xa2]=3xa2[sinαpRp(cosαprp1Rp)rpcosαsrscos3αpsinαsRs(cosαsrs1Rs)rs2(rp)2cos2αs].
rs=(2tanαptanαs+1)Rp2cosαp,
rsrp=(2tanαptanαs+1),
sinαsRs=sin2αsRpsinαp,
rs=Rp2tanαp+tanαstanαs×cosαpsinαpcosαs2sinw.
ATC=3xa2Rp2F(αp,αs),
F(αp,αs)=sinαs[sin3αpcosαs+cos3αpsinαs(2tanαp+tanαs)2](2tanαp+tanαs)sin2αpcos3αpcosαs.
ATCcollimated=3R22(W2cosi)2F(α2,α1).
TTCcollimated=3r4R22(W2cosi)2(cosicosθ)F(α2,α1).
ATCfocus=3R32(W2cosθ)2F(α3,α4).
TTCfocus=3r4R32(W2cosθ)2F(α3,α4).
Δ=TTCcollimated+TTCfocus=38W2(2tanα3+tanα4)cosα3sinα3cosα4tanα4sinwfocus(R3R22cos3icosθ×F(α2,α1)1R3cos2θ×F(α3,α4)).
R22R32=(cosicosθ)3.
i=γ+δ,
θ=γδ,
sin(γδ)+sin(γ+δ)=mgλ,
2sinγcosδ=mgλ.

Metrics