Abstract

The feasibility of steel materials classification by support vector machines (SVMs), in combination with laser-induced breakdown spectroscopy (LIBS) technology, was investigated. Multi-classification methods based on SVM, the one-against-all and the one-against-one models, and a combination model, are applied to classify nine types of round steel. Due to the inhomogeneity of steel composition, the data obtained using the one-against-all and one-against-one models were ambiguous and difficult to discriminate; whereas, the combination model, was able to successfully distinguish most of the ambiguous data and control the computation cost within an acceptable range. The studies presented here demonstrate that LIBS–SVM is a useful technique for the identification and discrimination of steel materials, and would be very well-suited for process analysis in the steelmaking industry.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust validation of pattern classification methods for laser-induced breakdown spectroscopy

Jeremiah Remus and Kehinde S. Dunsin
Appl. Opt. 51(7) B49-B56 (2012)

Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues

Frank C. De Lucia, Jr., Jennifer L. Gottfried, Chase A. Munson, and Andrzej W. Miziolek
Appl. Opt. 47(31) G112-G121 (2008)

Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, and Seyyed Mohammad Reza Darbani
Appl. Opt. 56(12) 3372-3377 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription