Abstract

The application of compressive sensing (CS) for imaging has been extensively investigated and the underlying mathematical principles are well understood. The theory of CS is motivated by the sparse nature of real-world signals and images, and provides a framework in which high-resolution information can be recovered from low-resolution measurements. This, in turn, enables hardware concepts that require much fewer detectors than a conventional sensor. For infrared imagers there is a significant potential impact on the cost and footprint of the sensor. When smaller focal plane arrays (FPAs) to obtain large images are allowed, large formats FPAs are unnecessary. From a hardware standpoint, this benefit is independent of the actual level of compression and effective data rate reduction, which depend on the choice of codes and information recovery algorithm. Toward this end, we used a CS testbed for mid-wave infrared (MWIR) to experimentally show that information at high spatial resolution can be successfully recovered from measurements made with a small FPA. We describe the highly parallel and scalable CS architecture of the testbed, and its implementation using a reflective spatial light modulator and a focal plane array with variable pixel sizes. We also discuss the impact of real-world devices and the effect of sensor calibration that must be addressed in practice. Finally, we present preliminary results of image reconstruction, which demonstrate the testbed operation. These results experimentally confirm that high-resolution spatial information (for tasks such as imaging and target detection) can be successfully recovered from low-resolution measurements. We also discuss the potential system-level benefits of CS for infrared imaging, and some of the challenges that must be addressed in future infrared CS imagers designs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector

Chen Fu, Henry Arguello, Brian M. Sadler, and Gonzalo R. Arce
J. Opt. Soc. Am. A 32(11) 2178-2188 (2015)

Coded aperture design in compressive spectral imaging based on side information

Laura Galvis, Daniel Lau, Xu Ma, Henry Arguello, and Gonzalo R. Arce
Appl. Opt. 56(22) 6332-6340 (2017)

Snapshot colored compressive spectral imager

Claudia V. Correa, Henry Arguello, and Gonzalo R. Arce
J. Opt. Soc. Am. A 32(10) 1754-1763 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription