P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,” J. Biomed. Opt 17, 045003 (2012).

[Crossref]

H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).

[Crossref]

N. Ghosh, I. A. Vitkin, and M. F. G. Wood, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[Crossref]

S.-M. F. Nee and T.-W. Nee, “Polarization of dipole scattering by isotropic medium,” Proc. SPIE 7065, 70650P (2008).

[Crossref]

I. L. Maksimova, S. V. Romanov, and V. F. Izotova, “The effect of multiple scattering in disperse media on polarization characteristics of scattered light,” Opt. Spectra 92, 915–923 (2002).

[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).

[Crossref]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997).

[Crossref]

G. W. Kattawar, “A search for circular polarization in nature,” Opt. Photon. News 5(9), 42–43 (1994).

[Crossref]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).

[Crossref]

R. Simon, “Nondepolarizing systems and degree of polarization,” Opt. Commun. 77, 349–354 (1990).

[Crossref]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).

[Crossref]

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261 (1985).

[Crossref]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).

[Crossref]

E. Collett, “Mueller-Stokes matrix formulation of Fresnel’s equations,” Am. J. Phys. 39, 517–528 (1971).

[Crossref]

R. H. Muller, “Definitions and conventions in ellipsometry,” Surf. Sci. 16, 14–33 (1969).

[Crossref]

F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10, 415–427 (1942).

[Crossref]

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).

H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).

[Crossref]

H. G. Akarçay, J. Rička, and M. Frenz are preparing a manuscript to be called “jaMCp3: towards the realistic modeling of light propagation in biological tissues.”

H. G. Akarçay, “Polarized light propagation in biological tissue: towards realistic modeling,” Ph.D. dissertation (University of Bern, 2011), http://www.iap.unibe.ch/publications/pub-detail.php?lang=en&id=3706 .

H. G. Akarçay, A. Hohmann, A. Kienle, M. Frenz, and J. Rička, “Monte Carlo modeling of polarized light propagation. Part I. Stokes versus Jones,” Appl. Opt.53, 7576–7585 (2014).

R. M. A. Azzam, “A perspective on ellipsometry,” Surf. Sci. 56, 6–18 (1976).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).

[Crossref]

J. M. Bennett, “Polarization,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, Chap. 2.5.

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261 (1985).

[Crossref]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).

[Crossref]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).

[Crossref]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).

[Crossref]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997).

[Crossref]

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

E. Collett, “Mueller-Stokes matrix formulation of Fresnel’s equations,” Am. J. Phys. 39, 517–528 (1971).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, 1st ed. (Cambridge University, 1991), Chap. 7.

J. Rička and M. Frenz, “Polarized light: electrodynamic fundamentals,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 4.

H. G. Akarçay, J. Rička, and M. Frenz are preparing a manuscript to be called “jaMCp3: towards the realistic modeling of light propagation in biological tissues.”

H. G. Akarçay, A. Hohmann, A. Kienle, M. Frenz, and J. Rička, “Monte Carlo modeling of polarized light propagation. Part I. Stokes versus Jones,” Appl. Opt.53, 7576–7585 (2014).

J. Rička and M. Frenz, “From electrodynamics to Monte Carlo simulations,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 7.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

N. Ghosh, I. A. Vitkin, and M. F. G. Wood, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[Crossref]

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261 (1985).

[Crossref]

D. H. Goldstein, “Polarized Light: Second Edition, Revised and Expanded” (CRC Press, 2003).

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2001), Chap. 4, Appendix A.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).

[Crossref]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997).

[Crossref]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).

[Crossref]

F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,” J. Biomed. Opt 17, 045003 (2012).

[Crossref]

H. G. Akarçay, A. Hohmann, A. Kienle, M. Frenz, and J. Rička, “Monte Carlo modeling of polarized light propagation. Part I. Stokes versus Jones,” Appl. Opt.53, 7576–7585 (2014).

R. T. Holm, “Convention confusions,” in Handbook of Optical Constants of Solids: Index, E. D. Palik, ed. (Academic, 1998), Vol. 3, Chap. 2.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

I. L. Maksimova, S. V. Romanov, and V. F. Izotova, “The effect of multiple scattering in disperse media on polarization characteristics of scattered light,” Opt. Spectra 92, 915–923 (2002).

[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).

[Crossref]

S. L. Jacques, “Monte Carlo modeling of light transport in tissue (steady state and time of flight),” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 5.

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

G. W. Kattawar, “A search for circular polarization in nature,” Opt. Photon. News 5(9), 42–43 (1994).

[Crossref]

F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,” J. Biomed. Opt 17, 045003 (2012).

[Crossref]

H. G. Akarçay, A. Hohmann, A. Kienle, M. Frenz, and J. Rička, “Monte Carlo modeling of polarized light propagation. Part I. Stokes versus Jones,” Appl. Opt.53, 7576–7585 (2014).

D. E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical Algorithms, 3rd ed. (Addison-Wesley, 1997), Chap. 3.

E. Landi Degl’Innocenti, “The physics of polarization,” in Astrophysical Spectropolarimetry, J. Trujillo-Bueno, F. Moreno-Insertis, and F. Sánchez Martinez, eds. (Cambridge University, 2000).

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).

[Crossref]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).

[Crossref]

I. L. Maksimova, S. V. Romanov, and V. F. Izotova, “The effect of multiple scattering in disperse media on polarization characteristics of scattered light,” Opt. Spectra 92, 915–923 (2002).

[Crossref]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).

[Crossref]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997).

[Crossref]

R. H. Muller, “Definitions and conventions in ellipsometry,” Surf. Sci. 16, 14–33 (1969).

[Crossref]

S.-M. F. Nee and T.-W. Nee, “Polarization of dipole scattering by isotropic medium,” Proc. SPIE 7065, 70650P (2008).

[Crossref]

S.-M. F. Nee and T.-W. Nee, “Polarization of dipole scattering by isotropic medium,” Proc. SPIE 7065, 70650P (2008).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10, 415–427 (1942).

[Crossref]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).

[Crossref]

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2001), Chap. 4, Appendix A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, 1st ed. (Cambridge University, 1991), Chap. 7.

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).

[Crossref]

J. Rička and M. Frenz, “Polarized light: electrodynamic fundamentals,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 4.

H. G. Akarçay, J. Rička, and M. Frenz are preparing a manuscript to be called “jaMCp3: towards the realistic modeling of light propagation in biological tissues.”

H. G. Akarçay, A. Hohmann, A. Kienle, M. Frenz, and J. Rička, “Monte Carlo modeling of polarized light propagation. Part I. Stokes versus Jones,” Appl. Opt.53, 7576–7585 (2014).

J. Rička and M. Frenz, “From electrodynamics to Monte Carlo simulations,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 7.

G. W. Rolfe, The Polariscope in the Chemical Laboratory: An Introduction to Polarimetry and Related Methods (Macmillan, 1919).

I. L. Maksimova, S. V. Romanov, and V. F. Izotova, “The effect of multiple scattering in disperse media on polarization characteristics of scattered light,” Opt. Spectra 92, 915–923 (2002).

[Crossref]

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2001), Chap. 4, Appendix A.

F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,” J. Biomed. Opt 17, 045003 (2012).

[Crossref]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).

[Crossref]

C. Schwartz, “Probing random media with singular waves,” Ph.D. dissertation (University of Central Florida, 2006).

R. Simon, “Nondepolarizing systems and degree of polarization,” Opt. Commun. 77, 349–354 (1990).

[Crossref]

M. H. Smith, “Interpreting Mueller matrix images of tissues,” in The International Symposium on Biomedical Optics (International Society for Optics and Photonics, 2001).

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).

P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, 1st ed. (Cambridge University, 1991), Chap. 7.

H. C. van de Hulst, “Light Scattering by Small Particles” (Wiley, 1957).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, 1st ed. (Cambridge University, 1991), Chap. 7.

N. Ghosh, I. A. Vitkin, and M. F. G. Wood, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[Crossref]

F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,” J. Biomed. Opt 17, 045003 (2012).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).

[Crossref]

N. Ghosh, I. A. Vitkin, and M. F. G. Wood, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[Crossref]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).

[Crossref]

E. Collett, “Mueller-Stokes matrix formulation of Fresnel’s equations,” Am. J. Phys. 39, 517–528 (1971).

[Crossref]

W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).

[Crossref]

V. Maxia, “Light polarization problems,” Appl. Opt. 15, 2576–2578 (1976).

[Crossref]

A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).

[Crossref]

S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588 (2000).

[Crossref]

M. J. Raković, G. W. Kattawar, M. Mehrübeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399–3408 (1999).

[Crossref]

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).

[Crossref]

P. Sun, X. Cao, H. Sun, M. Sun, and M. He, “Spatial pattern characterization of linear polarization-sensitive backscattering Mueller matrix elements of human serum albumin sphere suspension,” J. Biol. Phys. 39, 501–514 (2013).

[Crossref]

F. Voit, A. Hohmann, J. Schäfer, and A. Kienle, “Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory,” J. Biomed. Opt 17, 045003 (2012).

[Crossref]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).

[Crossref]

N. Ghosh, I. A. Vitkin, and M. F. G. Wood, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).

[Crossref]

F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10, 415–427 (1942).

[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).

[Crossref]

J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261 (1985).

[Crossref]

R. Simon, “Nondepolarizing systems and degree of polarization,” Opt. Commun. 77, 349–354 (1990).

[Crossref]

D. Côté and A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148–163 (2005).

[Crossref]

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005).

[Crossref]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997).

[Crossref]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18, 10200–10208 (2010).

[Crossref]

A. Al-Qasimi, O. Korotkova, D. James, and E. Wolf, “Definitions of the degree of polarization of a light beam,” Opt. Lett. 32, 1015–1016 (2007).

[Crossref]

B. D. Cameron, M. J. Raković, M. Mehrübeoğlu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).

[Crossref]

G. W. Kattawar, “A search for circular polarization in nature,” Opt. Photon. News 5(9), 42–43 (1994).

[Crossref]

I. L. Maksimova, S. V. Romanov, and V. F. Izotova, “The effect of multiple scattering in disperse media on polarization characteristics of scattered light,” Opt. Spectra 92, 915–923 (2002).

[Crossref]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).

[Crossref]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).

[Crossref]

H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).

[Crossref]

S.-M. F. Nee and T.-W. Nee, “Polarization of dipole scattering by isotropic medium,” Proc. SPIE 7065, 70650P (2008).

[Crossref]

R. H. Muller, “Definitions and conventions in ellipsometry,” Surf. Sci. 16, 14–33 (1969).

[Crossref]

R. M. A. Azzam, “A perspective on ellipsometry,” Surf. Sci. 56, 6–18 (1976).

[Crossref]

G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).

H. G. Akarçay, A. Hohmann, A. Kienle, M. Frenz, and J. Rička, “Monte Carlo modeling of polarized light propagation. Part I. Stokes versus Jones,” Appl. Opt.53, 7576–7585 (2014).

S. L. Jacques, “Monte Carlo modeling of light transport in tissue (steady state and time of flight),” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 5.

H. C. van de Hulst, “Light Scattering by Small Particles” (Wiley, 1957).

C. Schwartz, “Probing random media with singular waves,” Ph.D. dissertation (University of Central Florida, 2006).

M. H. Smith, “Interpreting Mueller matrix images of tissues,” in The International Symposium on Biomedical Optics (International Society for Optics and Photonics, 2001).

Our simulated dataset is available on the following website (within the “Polarized light propagation in biological tissue” project): www.iapbp.unibe.ch/content.php/home/projects/ .

G. W. Rolfe, The Polariscope in the Chemical Laboratory: An Introduction to Polarimetry and Related Methods (Macmillan, 1919).

J. Rička and M. Frenz, “Polarized light: electrodynamic fundamentals,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 4.

J. Rička and M. Frenz, “From electrodynamics to Monte Carlo simulations,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), Chap. 7.

H. G. Akarçay, “Polarized light propagation in biological tissue: towards realistic modeling,” Ph.D. dissertation (University of Bern, 2011), http://www.iap.unibe.ch/publications/pub-detail.php?lang=en&id=3706 .

H. G. Akarçay, J. Rička, and M. Frenz are preparing a manuscript to be called “jaMCp3: towards the realistic modeling of light propagation in biological tissues.”

R. T. Holm, “Convention confusions,” in Handbook of Optical Constants of Solids: Index, E. D. Palik, ed. (Academic, 1998), Vol. 3, Chap. 2.

E. Landi Degl’Innocenti, “The physics of polarization,” in Astrophysical Spectropolarimetry, J. Trujillo-Bueno, F. Moreno-Insertis, and F. Sánchez Martinez, eds. (Cambridge University, 2000).

J. M. Bennett, “Polarization,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, Chap. 2.5.

D. H. Goldstein, “Polarized Light: Second Edition, Revised and Expanded” (CRC Press, 2003).

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2001), Chap. 4, Appendix A.

http://mathworld.wolfram.com/EulerAngles.html .

As stated above, ns=4 would actually be sufficient to construct a sample’s PM matrix. Here, we prefer to solve an overdetermined system primarily for didactic purposes, thereby remaining consistent with respect to our PM matrix definition given in [1].

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Perhaps, it would not be preposterous to claim that the “phenomenological” character attributed to the Stokes vector is an appropriate one, as linear states seem to be preponderant in nature, due not only to the passing of the sunlight through the atmosphere, but also to the diverse reflections that occur on various surfaces.

Random number generators in C++ intended for Monte Carlo applications and released under the Gnu general public license can be found at: http://www.agner.org/random/ .

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, 1st ed. (Cambridge University, 1991), Chap. 7.

D. E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical Algorithms, 3rd ed. (Addison-Wesley, 1997), Chap. 3.