Abstract

Laser cooling of trapped atoms and ions in optical clocks demands stable light sources with precisely known absolute frequencies. Since a frequency comb is a vital part of any optical clock, the comb lines can be used for stabilizing tunable, user-friendly diode lasers. Here, a light source for laser cooling of trapped strontium ions is described. The megahertz-level stability and absolute frequency required are realized by stabilizing a distributed-feedback semiconductor laser to a frequency comb. Simple electronics is used to lock and scan the laser across the comb lines, and comb mode number ambiguities are resolved by using a separate, saturated absorption cell that exhibits easily distinguishable hyperfine absorption lines with known frequencies. Due to the simplicity, speed, and wide tuning range it offers, the employed technique could find wider use in precision spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency stabilization of a 369 nm diode laser by nonlinear spectroscopy of Ytterbium ions in a discharge

Michael W Lee, Marie Claire Jarratt, Christian Marciniak, and Michael J Biercuk
Opt. Express 22(6) 7210-7221 (2014)

Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements

S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, and P. De Natale
Opt. Express 16(15) 11637-11646 (2008)

High-precision methanol spectroscopy with a widely tunable SI-traceable frequency-comb-based mid-infrared QCL

R. Santagata, D. B. A. Tran, B. Argence, O. Lopez, S. K. Tokunaga, F. Wiotte, H. Mouhamad, A. Goncharov, M. Abgrall, Y. Le Coq, H. Alvarez-Martinez, R. Le Targat, W. K. Lee, D. Xu, P.-E. Pottie, B. Darquié, and A. Amy-Klein
Optica 6(4) 411-423 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription