Abstract

We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced upconversion quantum yield near spherical gold nanoparticles – a comprehensive simulation based analysis

Stefan Fischer, Deepu Kumar, Florian Hallermann, Gero von Plessen, and Jan Christoph Goldschmidt
Opt. Express 24(6) A460-A475 (2016)

Thermal cycling and the optical and electrical characterization of self-assembled multilayer Nile Blue A–gold thin films

Brian Geist, William B. Spillman, and Richard O. Claus
Appl. Opt. 44(30) 6357-6360 (2005)

Investigating the distance limit of a metal nanoparticle based spectroscopic ruler

Subhasish Chatterjee, Jong Bum Lee, Nikesh V. Valappil, Dan Luo, and Vinod M. Menon
Biomed. Opt. Express 2(6) 1727-1733 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics