Abstract

We proposed a two-mode multiplexer/demultiplexer (mux/demux) device using an unbalanced Mach–Zehnder interferometer with Y junctions. The proposed device had simulated extinction ratio greater than 30 dB for both mux and demux operations with an excess loss of 0.17 dB. The device was fabricated using polymer materials and characterized via a tunable laser source over the wavelength of 1545–1555 nm. The experimental performance of the device closely agreed with the theoretical prediction. The proposed device is easy to fabricate and will have applications in future multimode transmission systems for further extending fiber transmission capacity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
    [CrossRef]
  2. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
    [CrossRef]
  3. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305  Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31, 554–562 (2013).
    [CrossRef]
  4. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber,” J. Lightwave Technol. 30, 658–665 (2012).
    [CrossRef]
  5. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.
  6. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19, 8808–8814 (2011).
    [CrossRef]
  7. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19, 16672–16679 (2011).
    [CrossRef]
  8. F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express 18, 4709–4716 (2010).
    [CrossRef]
  9. J. Xu, C. Peucheret, J. K. Lyngsø, and L. Leick, “Two-mode multiplexing at 2×10.7  Gbps over a 7-cell hollow-core photonic bandgap fiber,” Opt. Express 20, 12449–12456 (2012).
    [CrossRef]
  10. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96  km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
    [CrossRef]
  11. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2100  Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol. 30, 618–623 (2012).
    [CrossRef]
  12. X. Chen, A. Li, J. Ye, A. Al Amin, and W. Shieh, “Demonstration of few-mode compatible optical add/drop multiplexer for mode-division multiplexed superchannel,” J. Lightwave Technol. 31, 641–647 (2012).
    [CrossRef]
  13. H. Kubota, H. Takara, and T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Exp. 8, 1927–1932 (2011).
    [CrossRef]
  14. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
    [CrossRef]
  15. S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE 6th International Conference on Group IV Photonics (IEEE, 2009), pp. 166–168.
  16. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
    [CrossRef]
  17. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
    [CrossRef]
  18. H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Exp. 8, 684–688 (2011).
    [CrossRef]
  19. R. M. de Ridder and C. G. H. Roeloffzen, “Interleavers,” in Wavelength Filters for Fibre Optics, H. Venghaus, ed. (Springer, 2006), pp. 381–432.
  20. J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol. 30, 304–309 (2012).
    [CrossRef]

2013 (3)

2012 (8)

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
[CrossRef]

J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol. 30, 304–309 (2012).
[CrossRef]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber,” J. Lightwave Technol. 30, 658–665 (2012).
[CrossRef]

J. Xu, C. Peucheret, J. K. Lyngsø, and L. Leick, “Two-mode multiplexing at 2×10.7  Gbps over a 7-cell hollow-core photonic bandgap fiber,” Opt. Express 20, 12449–12456 (2012).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96  km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[CrossRef]

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2100  Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol. 30, 618–623 (2012).
[CrossRef]

X. Chen, A. Li, J. Ye, A. Al Amin, and W. Shieh, “Demonstration of few-mode compatible optical add/drop multiplexer for mode-division multiplexed superchannel,” J. Lightwave Technol. 31, 641–647 (2012).
[CrossRef]

2011 (5)

2010 (1)

Al Amin, A.

Awaji, Y.

Bagheri, S.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE 6th International Conference on Group IV Photonics (IEEE, 2009), pp. 166–168.

Bigo, S.

Bigot-Astruc, M.

Bolle, C.

Bosco, G.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
[CrossRef]

Boutin, A.

Brindel, P.

Burrows, E. C.

Carena, A.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
[CrossRef]

Charlet, G.

Chen, S.

Chen, X.

Cigliutti, R.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

Curri, V.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
[CrossRef]

Da Ros, F.

Dadap, J. I.

Dalir, H.

H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Exp. 8, 684–688 (2011).
[CrossRef]

de Ridder, R. M.

R. M. de Ridder and C. G. H. Roeloffzen, “Interleavers,” in Wavelength Filters for Fibre Optics, H. Venghaus, ed. (Springer, 2006), pp. 381–432.

Ding, Y.

Driscoll, J. B.

Esmaeelpour, M.

Essiambre, R. J.

Forghieri, F.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
[CrossRef]

Gao, G.

Gnauck, A. H.

Green, W. M. J.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE 6th International Conference on Group IV Photonics (IEEE, 2009), pp. 166–168.

Grote, R. R.

Hanzawa, N.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

Hayashi, T.

Huang, B.

Imamura, K.

Inaba, H.

Ishizaka, Y.

Kanno, A.

Kawaguchi, Y.

Kawanishi, T.

Klaus, W.

Kobayashi, T.

Koebele, C.

Koshiba, M.

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
[CrossRef]

F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express 18, 4709–4716 (2010).
[CrossRef]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

Koyama, F.

H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Exp. 8, 684–688 (2011).
[CrossRef]

Kubota, H.

H. Kubota, H. Takara, and T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Exp. 8, 1927–1932 (2011).
[CrossRef]

Leick, L.

Li, A.

Lingle, R.

Love, J. D.

Lu, M.

Lyngsø, J. K.

Mardoyan, H.

Matsui, T.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

McCurdy, A. H.

Morioka, T.

H. Kubota, H. Takara, and T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Exp. 8, 1927–1932 (2011).
[CrossRef]

Mukasa, K.

Mumtaz, S.

Nespola, A.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

Osgood, R. M.

Ou, H.

Peckham, D. W.

Peucheret, C.

Poggiolini, P.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
[CrossRef]

Provost, L.

Puttnam, B. J.

Randel, S.

Riesen, N.

Roeloffzen, C. G. H.

R. M. de Ridder and C. G. H. Roeloffzen, “Interleavers,” in Wavelength Filters for Fibre Optics, H. Venghaus, ed. (Springer, 2006), pp. 381–432.

Ryf, R.

Saitoh, F.

Saitoh, K.

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
[CrossRef]

F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express 18, 4709–4716 (2010).
[CrossRef]

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

Sakaguchi, J.

Sakamoto, T.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

Salsi, M.

Sasaki, T.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

Shieh, W.

Sierra, A.

Sillard, P.

Souhan, B.

Sperti, D.

Sugizaki, R.

Takara, H.

H. Kubota, H. Takara, and T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Exp. 8, 1927–1932 (2011).
[CrossRef]

Taru, T.

Tomita, S.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

Tran, P.

Uematsu, T.

Verluise, F.

Wada, N.

Watanabe, M.

Winzer, P. J.

Xu, J.

Yamamoto, Y.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

Ye, J.

Yokota, Y.

H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Exp. 8, 684–688 (2011).
[CrossRef]

Zeolla, D.

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16×125  Gb/s quasi-Nyquist DAC-generated PM-16QAM transmission over 3590  km of PSCF,” IEEE Photon. Technol. Lett. 24, 2143–2146 (2012).
[CrossRef]

IEICE Electron. Exp. (2)

H. Kubota, H. Takara, and T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Exp. 8, 1927–1932 (2011).
[CrossRef]

H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Exp. 8, 684–688 (2011).
[CrossRef]

J. Lightwave Technol. (8)

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30, 2421–2426 (2012).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96  km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012).
[CrossRef]

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2100  Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol. 30, 618–623 (2012).
[CrossRef]

X. Chen, A. Li, J. Ye, A. Al Amin, and W. Shieh, “Demonstration of few-mode compatible optical add/drop multiplexer for mode-division multiplexed superchannel,” J. Lightwave Technol. 31, 641–647 (2012).
[CrossRef]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM, or PM-16QAM subcarriers,” J. Lightwave Technol. 29, 53–61 (2011).
[CrossRef]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305  Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31, 554–562 (2013).
[CrossRef]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber,” J. Lightwave Technol. 30, 658–665 (2012).
[CrossRef]

J. D. Love and N. Riesen, “Single-, few-, and multimode Y-junctions,” J. Lightwave Technol. 30, 304–309 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (3)

R. M. de Ridder and C. G. H. Roeloffzen, “Interleavers,” in Wavelength Filters for Fibre Optics, H. Venghaus, ed. (Springer, 2006), pp. 381–432.

S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE 6th International Conference on Group IV Photonics (IEEE, 2009), pp. 166–168.

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber with mode coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic configuration of two-mode mux/demux device.

Fig. 2.
Fig. 2.

Mode field evolution in the first Y-junction splitter when (a) fundamental mode or (b) first-order mode was excited in launching port A.

Fig. 3.
Fig. 3.

Cross section of the waveguide structure at (a) two-mode region and (b) single-mode region.

Fig. 4.
Fig. 4.

Beamprop simulation of the basic demultiplexing function by exciting (a) fundamental mode or (b) first-order mode in port A, and the basic multiplexing function by launching light at (c) port 1 or (d) port 2 in TE polarization.

Fig. 5.
Fig. 5.

Demultiplexing extinction ratio varies with wavelength when (a) fundamental or (b) first-order mode was excited at port A in TE polarization. Multiplexing extinction ratio varies with wavelength when light was launched at (c) port 1 and (d) port 2 in TE polarization.

Fig. 6.
Fig. 6.

Simulated demultiplexing function by exciting the fundamental and first-order modes simultaneously in port A at different power ratios.

Fig. 7.
Fig. 7.

Simulated multiplexing function by launching light in port 1 and port 2 simultaneously at different power ratios.

Fig. 8.
Fig. 8.

Illustration of the fabrication process of (a) formation of BCB and ZP51 as core and lower cladding layers by spin coating, (b) deposition of Cr layer by RF sputtering, (c) patterning of photo resist by photolithography, (d) patterning of Cr layer by wet etching, (e) patterning of BCB by reaction ion etching, (f) removal of Cr and photo resist by wet etching, and (g) formation of ZP51 as upper cladding layer by spin coating.

Fig. 9.
Fig. 9.

Experimental mode field observed at output port A when launching TE light from (a) port 2 and (b) port 1. Experimental mode field observed at output port 1 and port 2 when TE light was launched from (c) middle and (d) edge of port A to excite the fundamental and first-order modes, respectively.

Fig. 10.
Fig. 10.

Simulated extinction ratio varied with power ratio between fundamental and first-order modes excited in port A.

Fig. 11.
Fig. 11.

Experimental extinction ratio in TE.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[0.50.5]
[0.50.5],
[exp(iβΔL)001],
[cos(Δβ·Z/2)isin(Δβ·Z/2)isin(Δβ·Z/2)cos(Δβ·Z/2)],
[APo1APo2]=[cos(Δβ·Z/2)isin(Δβ·Z/2)isin(Δβ·Z/2)cos(Δβ·Z/2)]·[exp(iβΔL)001][0.5±0.5]APoA,
[APo1APo2]=[0.5i0.5i0.50.5][i001][0.50.5]APoA(fun)=[0APoA(fun)],
[APo1APo2]=[0.5i0.5i0.50.5][i001][0.50.5]APoA(fir)=[APoA(fir)0],

Metrics