Abstract

Optical power properties of lenses and materials in general can be influenced by thermal changes of the material and surrounding medium. In the case of an intraocular lens (IOL) implant, the spherical power (SP), cylinder power, (CP), astigmatism, and spherical aberration are the critical fundamental properties that can significantly impact its efficacy. Directly evaluating how changes in temperature can affect these optical properties may show the importance of considering temperature when evaluating IOL optical characteristics. In this paper, we present a quantitative study on evaluating the impact of environmental temperature changes on IOL fundamental optical properties by testing IOL samples with different materials (e.g., hydrophobic and hydrophilic) and designs (e.g., monofocal and toric) to better encompass types of IOLs in conventional use today. The results from this study demonstrate that significant changes are observed as temperatures are changed from room temperature (20°C) to slightly above body temperature (40°C). Findings indicate that evaluating optical properties at arbitrary temperatures could significantly affect the characterization of IOLs that are already near the tolerance thresholds.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The Eye Diseases Prevalence Research Group, “Prevalence of cataract and pseudophakia/aphakia among adults in the United States,” Arch. Ophthalmol.122, 487–494 (2004).
  2. D. J. Apple and J. Sims, “Harold Ridley and the invention of the intraocular lens,” Surv. Ophthalmol. 40, 279–292 (1996).
    [CrossRef]
  3. ISO 11979-2, International Standard, Ophthalmic Implants-Intraocular Lenses-Part 2: Optical Properties, and Test Methods (1999).
  4. M. Shafahi and K. Vafai, “Human eye response to thermal disturbances,” J. Heat Transfer 133, 011009 (2011).
    [CrossRef]
  5. G. M. Whitesides and S. K. Y. Tang, “Fluid optics,” Optofluidics 6329, 63290A (2006).
  6. H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).
  7. R. J. Landry, I. K. Ilev, T. J. Pfefer, M. Wolffe, and J. J. Alpar, “Characterizing reflections from intraocular lens implants,” Eye 21, 1083–1086 (2007).
    [CrossRef]
  8. D. Kim, R. H. James, R. J. Landry, D. Calogero, J. Anderson, and I. K. Ilev, “Quantification of glistenings in intraocular lenses using a ballistic-photon removing integrating-sphere method,” Appl. Opt. 50, 6461–6467 (2011).
    [CrossRef]

2011

2007

R. J. Landry, I. K. Ilev, T. J. Pfefer, M. Wolffe, and J. J. Alpar, “Characterizing reflections from intraocular lens implants,” Eye 21, 1083–1086 (2007).
[CrossRef]

2006

G. M. Whitesides and S. K. Y. Tang, “Fluid optics,” Optofluidics 6329, 63290A (2006).

1996

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

D. J. Apple and J. Sims, “Harold Ridley and the invention of the intraocular lens,” Surv. Ophthalmol. 40, 279–292 (1996).
[CrossRef]

Alpar, J. J.

R. J. Landry, I. K. Ilev, T. J. Pfefer, M. Wolffe, and J. J. Alpar, “Characterizing reflections from intraocular lens implants,” Eye 21, 1083–1086 (2007).
[CrossRef]

Anderson, J.

Apple, D. J.

D. J. Apple and J. Sims, “Harold Ridley and the invention of the intraocular lens,” Surv. Ophthalmol. 40, 279–292 (1996).
[CrossRef]

Calogero, D.

Fujishima, H.

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

Ilev, I. K.

James, R. H.

Kim, D.

Landry, R. J.

Pfefer, T. J.

R. J. Landry, I. K. Ilev, T. J. Pfefer, M. Wolffe, and J. J. Alpar, “Characterizing reflections from intraocular lens implants,” Eye 21, 1083–1086 (2007).
[CrossRef]

Sato, N.

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

Shafahi, M.

M. Shafahi and K. Vafai, “Human eye response to thermal disturbances,” J. Heat Transfer 133, 011009 (2011).
[CrossRef]

Sims, J.

D. J. Apple and J. Sims, “Harold Ridley and the invention of the intraocular lens,” Surv. Ophthalmol. 40, 279–292 (1996).
[CrossRef]

Tang, S. K. Y.

G. M. Whitesides and S. K. Y. Tang, “Fluid optics,” Optofluidics 6329, 63290A (2006).

Toda, I.

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

Tsubota, K.

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

Vafai, K.

M. Shafahi and K. Vafai, “Human eye response to thermal disturbances,” J. Heat Transfer 133, 011009 (2011).
[CrossRef]

Whitesides, G. M.

G. M. Whitesides and S. K. Y. Tang, “Fluid optics,” Optofluidics 6329, 63290A (2006).

Wolffe, M.

R. J. Landry, I. K. Ilev, T. J. Pfefer, M. Wolffe, and J. J. Alpar, “Characterizing reflections from intraocular lens implants,” Eye 21, 1083–1086 (2007).
[CrossRef]

Yamada, M.

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

Appl. Opt.

Br. J. Ophthalmol.

H. Fujishima, I. Toda, M. Yamada, N. Sato, and K. Tsubota, “Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry,” Br. J. Ophthalmol. 80, 29–32 (1996).

Eye

R. J. Landry, I. K. Ilev, T. J. Pfefer, M. Wolffe, and J. J. Alpar, “Characterizing reflections from intraocular lens implants,” Eye 21, 1083–1086 (2007).
[CrossRef]

J. Heat Transfer

M. Shafahi and K. Vafai, “Human eye response to thermal disturbances,” J. Heat Transfer 133, 011009 (2011).
[CrossRef]

Optofluidics

G. M. Whitesides and S. K. Y. Tang, “Fluid optics,” Optofluidics 6329, 63290A (2006).

Surv. Ophthalmol.

D. J. Apple and J. Sims, “Harold Ridley and the invention of the intraocular lens,” Surv. Ophthalmol. 40, 279–292 (1996).
[CrossRef]

Other

ISO 11979-2, International Standard, Ophthalmic Implants-Intraocular Lenses-Part 2: Optical Properties, and Test Methods (1999).

The Eye Diseases Prevalence Research Group, “Prevalence of cataract and pseudophakia/aphakia among adults in the United States,” Arch. Ophthalmol.122, 487–494 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Time versus SP experiment for IOL #1 (labeled power 36.0D SP) at the standard accepted temperature, 35°C. Results dictated the dwell time between each temperature change by adding 10 min to the point of equilibration.

Fig. 2.
Fig. 2.

Effect of temperature on SP through the range of room temperature to above average body temperature for IOL #1 (labeled power 36.0D SP). The accepted standard IOL testing temperature and average body temperature are marked off with a dotted line. The tolerance limit percent is shown on the right axis and 0%–100% is indicated as shaded in gray.

Fig. 3.
Fig. 3.

Effect of temperature on CP through the indicated temperature range for the toric IOL #5 (labeled cylinder power 1.25D CP). The accepted standard IOL testing temperature and average body temperature are marked off with a dotted line.

Fig. 4.
Fig. 4.

Effect of temperature on spherical aberration through the indicated temperature range for IOL #1 (labeled power 36.0D SP).

Tables (2)

Tables Icon

Table 1. Accepted Standard Tolerances for Positive and Negative Powers3

Tables Icon

Table 2. IOL Measured Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔT=SPiSPfT×100%.

Metrics