Abstract

We propose and experimentally demonstrate an extended range of tunable optical delay obtained from four-wave mixing wavelength conversion and dispersion. The conversion bandwidth and the maximum delay are enlarged through dynamic control of the optical phase by gain-transparent stimulated Brillouin scattering. The delay range is increased by 37%. Bit-error-rate measurements show a maximum power penalty of 2.0 dB with reference to back-to-back performance. The technique can be applied to different configurations of tunable delay lines constructed with a fiber parametric process and dispersion.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3, 489–500 (1995).
    [CrossRef]
  2. X. Wu, J. Wang, O. F. Yilmaz, S. R. Nuccio, A. Bogoni, and A. E. Willner, “Bit-rate-variable and order-switchable optical multiplexing of high-speed pseudorandom bit sequence using optical delays,” Opt. Lett. 35, 3042–3044 (2010).
    [CrossRef]
  3. X. Wu, S. R. Nuccio, O. F. Yilmaz, J. Wang, A. Bogoni, and A. E. Willner, “Controllable optical demultiplexing using continuously tunable optical parametric delay at 160 Gbit/s with <0.1 ps resolution,” Opt. Lett. 34, 3926–3928 (2009).
    [CrossRef]
  4. Zh. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13, 10431–10439 (2005).
    [CrossRef]
  5. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
    [CrossRef]
  6. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).
  7. I. Kobayashi and K. Kuroda, “Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology,” IEEE Trans. Instrum. Meas. 49, 762–765 (2000).
    [CrossRef]
  8. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [CrossRef]
  10. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  11. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [CrossRef]
  12. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [CrossRef]
  13. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [CrossRef]
  14. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
    [CrossRef]
  15. R. S. Tucker, P.-Ch. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  16. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022–12027 (2006).
    [CrossRef]
  17. M. P. Fok and C. Shu, “Tunable optical delay using four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber and group velocity dispersion,” J. Lightwave Technol. 26, 499–504 (2008).
    [CrossRef]
  18. S. R. Nuccio, O. F. Yilmaz, X. Wang, J. Wang, X. Wu, and A. E. Willner, “1.16 μs continuously tunable optical delay of a 100-Gb/s DQPSK signal using wavelength conversion and chromatic dispersion in an HNLF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFJ2.
  19. E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-μs continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17, 11958–11964 (2009).
    [CrossRef]
  20. N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “1.83-μs wavelength-transparent all-optical delay,” in Optical Fiber Communication Conference (2009), paper PDPA1.
  21. S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 μs wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35, 2985–2987 (2010).
    [CrossRef]
  22. N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “Microsecond parametric optical delays,” J. Lightwave Technol. 28, 448–455 (2010).
    [CrossRef]
  23. Y. Dai, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, and C. Xu, “Ultralong continuously tunable parametric delays via a cascading discrete stage,” Opt. Express 18, 333–339 (2010).
    [CrossRef]
  24. E. Mateo, F. Yaman, and G. Li, “Control of four-wave mixing phase-matching condition using the Brillouin slow-light effect in fibers,” Opt. Lett. 33, 488–490 (2008).
    [CrossRef]
  25. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
    [CrossRef]
  26. L. Wang and C. Shu, “Four-wave mixing bandwidth enlargement using phase-matching control by gain-transparent stimulated Brillouin scattering,” in Photonics in Switching Conference (2012), postdeadline paper 2.
  27. L. Wang and C. Shu, “Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude- and phase-modulated signals,” J. Lightwave Technol. 31, 1468–1474 (2013).
    [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2009).
  29. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
    [CrossRef]

2013 (1)

2010 (4)

2009 (2)

2008 (3)

2006 (2)

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022–12027 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

2005 (6)

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

2000 (1)

I. Kobayashi and K. Kuroda, “Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology,” IEEE Trans. Instrum. Meas. 49, 762–765 (2000).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1997 (1)

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[CrossRef]

1995 (1)

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3, 489–500 (1995).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2009).

Alic, N.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Bogoni, A.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Chang-Hasnain, C. J.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[CrossRef]

Dahan, D.

Dai, Y.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Eisenstein, G.

Fazal, I.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Fok, M. P.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[CrossRef]

Gaeta, A. L.

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hedekvist, P.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Herráez, M. G.

Huang, H.

Jiang, Zh.

Jopson, R. M.

Karlsson, M.

Kobayashi, I.

I. Kobayashi and K. Kuroda, “Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology,” IEEE Trans. Instrum. Meas. 49, 762–765 (2000).
[CrossRef]

Ku, P.-Ch.

Kuo, B. P. P.

Kuroda, K.

I. Kobayashi and K. Kuroda, “Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology,” IEEE Trans. Instrum. Meas. 49, 762–765 (2000).
[CrossRef]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[CrossRef]

Leaird, D. E.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Li, G.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Lipson, M.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[CrossRef]

Mateo, E.

McKinstrie, C. J.

Moro, S.

Myslivets, E.

Nuccio, S. R.

Okawachi, Y.

Radic, S.

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3, 489–500 (1995).
[CrossRef]

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Sharping, J. E.

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022–12027 (2006).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[CrossRef]

Shu, C.

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3, 489–500 (1995).
[CrossRef]

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).

Song, K. Y.

Thévenaz, L.

Tucker, R. S.

Turner-Foster, A. C.

Wang, J.

Wang, L.

L. Wang and C. Shu, “Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude- and phase-modulated signals,” J. Lightwave Technol. 31, 1468–1474 (2013).
[CrossRef]

L. Wang and C. Shu, “Four-wave mixing bandwidth enlargement using phase-matching control by gain-transparent stimulated Brillouin scattering,” in Photonics in Switching Conference (2012), postdeadline paper 2.

Wang, X.

S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 μs wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35, 2985–2987 (2010).
[CrossRef]

S. R. Nuccio, O. F. Yilmaz, X. Wang, J. Wang, X. Wu, and A. E. Willner, “1.16 μs continuously tunable optical delay of a 100-Gb/s DQPSK signal using wavelength conversion and chromatic dispersion in an HNLF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFJ2.

Weiner, A. M.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Willner, A. E.

X. Wu, J. Wang, O. F. Yilmaz, S. R. Nuccio, A. Bogoni, and A. E. Willner, “Bit-rate-variable and order-switchable optical multiplexing of high-speed pseudorandom bit sequence using optical delays,” Opt. Lett. 35, 3042–3044 (2010).
[CrossRef]

S. R. Nuccio, O. F. Yilmaz, X. Wang, H. Huang, J. Wang, X. Wu, and A. E. Willner, “Higher-order dispersion compensation to enable a 3.6 μs wavelength-maintaining delay of a 100 Gb/s DQPSK signal,” Opt. Lett. 35, 2985–2987 (2010).
[CrossRef]

X. Wu, S. R. Nuccio, O. F. Yilmaz, J. Wang, A. Bogoni, and A. E. Willner, “Controllable optical demultiplexing using continuously tunable optical parametric delay at 160 Gbit/s with <0.1 ps resolution,” Opt. Lett. 34, 3926–3928 (2009).
[CrossRef]

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

S. R. Nuccio, O. F. Yilmaz, X. Wang, J. Wang, X. Wu, and A. E. Willner, “1.16 μs continuously tunable optical delay of a 100-Gb/s DQPSK signal using wavelength conversion and chromatic dispersion in an HNLF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFJ2.

Wu, X.

Xu, C.

Yaman, F.

Yan, L.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Yilmaz, O. F.

Zhang, B.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Zhang, L.

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9, 1529–1531 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

I. Kobayashi and K. Kuroda, “Step-type optical delay line using silica-based planar light-wave circuit (PLC) technology,” IEEE Trans. Instrum. Meas. 49, 762–765 (2000).
[CrossRef]

IEEE/ACM Trans. Netw. (1)

R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Netw. 3, 489–500 (1995).
[CrossRef]

J. Lightwave Technol. (4)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[CrossRef]

Other (5)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2002).

S. R. Nuccio, O. F. Yilmaz, X. Wang, J. Wang, X. Wu, and A. E. Willner, “1.16 μs continuously tunable optical delay of a 100-Gb/s DQPSK signal using wavelength conversion and chromatic dispersion in an HNLF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFJ2.

N. Alic, E. Myslivets, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, and S. Radic, “1.83-μs wavelength-transparent all-optical delay,” in Optical Fiber Communication Conference (2009), paper PDPA1.

L. Wang and C. Shu, “Four-wave mixing bandwidth enlargement using phase-matching control by gain-transparent stimulated Brillouin scattering,” in Photonics in Switching Conference (2012), postdeadline paper 2.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle for dynamic control of phase matching in FWM wavelength conversion of data signals using gain-transparent SBS. νB, Brillouin frequency shift; fRF, frequency spacing between SBS pump and signal, and between signal and SBS Stokes wave.

Fig. 2.
Fig. 2.

Experimental setup on extension of tunable delay using gain-transparent SBS for conversion bandwidth enlargement. TL, tunable laser; EOM, electro-optic intensity modulator; EDFA, erbium-doped fiber amplifier; PC, polarization controller; BPF, band pass filter; HNLF, highly nonlinear fiber; ISO, isolator; OSA, optical spectrum analyzer; VOA, variable optical attenuator; PD, photodetector; OSC, oscilloscope; BERT, bit error rate tester; CFBG, chirped fiber Bragg grating.

Fig. 3.
Fig. 3.

Results of conventional tunable delay without using gain-transparent SBS. (a) Eye diagrams of the delayed idlers at different wavelengths, (b) delay time versus pump wavelength, and (c) BER performance of the input signal (B2B) and delayed idlers.

Fig. 4.
Fig. 4.

Comparison of results with and without using gain-transparent SBS. (a) (i) and (ii) eye diagrams of the delayed idler without SBS (W/O SBS) and with gain-transparent SBS for maximum CE (W/ SBS MAX); (b) (i) and (ii) the corresponding FWM spectra. The pump wavelength is 1554 nm.

Fig. 5.
Fig. 5.

Eye diagrams of the delayed idler without SBS (W/O SBS) and with gain-transparent SBS for maximum CE (W/ SBS MAX) at pump wavelengths of (a) 1546 nm, (b) 1547 nm, and (c) 1548 nm.

Fig. 6.
Fig. 6.

Results on extended tunable delay using gain-transparent SBS. (a) Eye diagrams of the delayed idlers at different wavelengths, (b) delay time versus pump wavelength, and (c) BER performance of the input signal (B2B) and delayed idlers.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δt=D·Δλi=D·(2Δλp),
gb(δ)=g01iδ=g012i(ωSBSωprΩB)/ΓB,
Δn=PSBS·c2Aeffωpr·Im[gb(δ)],
dPFWMdz=αPFWM4γ(PsPi)12PFWMsinθ+Re[gb(δ)]AeffPSBSPFWM,
dPs,idz=αPs,i+2γ(PsPi)12PFWMsinθ,
dPSBSdz=αPSBS+Re[gb(δ)]AeffPFWMPSBS,
dθdz=Δβ+γ(2PFWMPsPi)+γ(PsPi)12×(PFWM/Ps+PFWM/Pi4)cosθ+Im[gb(δ)]AeffPSBS,
κ=Δβ+2γP¯FWM±2|Im[gb(δ)]P¯SBS/Aeff|,

Metrics