Abstract

In this study, incoherent light with a spectral linewidth of 7 nm and 140 mW of power was generated from a laser diode (LD) into which incoherent light emitted from a superluminescent diode was injected with 2.7 mW of power. The spectral linewidth of the light from the LD was broadened to 12 nm when the diode’s output power was reduced to 15 mW. In the process of transformation from single-mode laser light to incoherent light with a broad spectrum by increasing injection-light power, multimode laser oscillation and a noisy spectrum were found in the light from the LD. This optical system can be used not only for amplification of incoherent light but also as a coherence-convertible light source.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
    [CrossRef]
  2. L. A. Wang and C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999).
    [CrossRef]
  3. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
    [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  6. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004).
    [CrossRef]
  7. T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
    [CrossRef]
  8. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
    [CrossRef]
  9. C. E. Dimas, H. S. Djie, and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth 288, 153–156 (2006).
    [CrossRef]
  10. Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
    [CrossRef]
  11. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
    [CrossRef]
  12. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  13. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000).
    [CrossRef]
  14. S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, and C. Y. Park, “Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb,” Opt. Lett. 31, 3594–3596 (2006).
    [CrossRef]
  15. V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
    [CrossRef]
  16. H. Kim, “Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks,” Opt. Express 18, 1714–1721 (2010).
    [CrossRef]
  17. N. Kuse, A. Ozawa, Y. Nomura, I. Ito, and Y. Kobayashi, “Injection locking of Yb-fiber based optical frequency comb,” Opt. Express 20, 10509–10518 (2012).
    [CrossRef]
  18. Z. Al-Qazwini and H. Kim, “5-Gb/s optical transmitter based on incoherent-light-injected RSOAs with graceful upgrade capability for WDM PONs,” Opt. Express 21, 8135–8141 (2013).
    [CrossRef]
  19. R. H. Pantell, “The laser oscillator with an external signal,” Proc. IEEE 53, 474–477 (1965).
    [CrossRef]
  20. C. L. Tang and H. Statz, “Phase-locking of laser oscillators by injected signal,” J. Appl. Phys. 38, 323–324 (1967).
    [CrossRef]
  21. K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].
  22. K. Otsuka and S. Tarucha, “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electron. 17, 1515–1521 (1981).
    [CrossRef]
  23. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
    [CrossRef]
  24. J. P. Gordon, “Quantum theory of a simple maser oscillator,” Phys. Rev. 161, 367–386 (1967).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

2010 (2)

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

H. Kim, “Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks,” Opt. Express 18, 1714–1721 (2010).
[CrossRef]

2006 (2)

2004 (2)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2000 (1)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000).
[CrossRef]

1999 (2)

L. A. Wang and C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999).
[CrossRef]

T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

1994 (1)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

1981 (3)

K. Otsuka and S. Tarucha, “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electron. 17, 1515–1521 (1981).
[CrossRef]

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

1967 (2)

C. L. Tang and H. Statz, “Phase-locking of laser oscillators by injected signal,” J. Appl. Phys. 38, 323–324 (1967).
[CrossRef]

J. P. Gordon, “Quantum theory of a simple maser oscillator,” Phys. Rev. 161, 367–386 (1967).
[CrossRef]

1965 (1)

R. H. Pantell, “The laser oscillator with an external signal,” Proc. IEEE 53, 474–477 (1965).
[CrossRef]

Adler, D. C.

Al-Qazwini, Z.

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Digonnet, M. J. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Dimas, C. E.

C. E. Dimas, H. S. Djie, and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth 288, 153–156 (2006).
[CrossRef]

Djie, H. S.

C. E. Dimas, H. S. Djie, and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth 288, 153–156 (2006).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gerginov, V.

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Gordon, J. P.

J. P. Gordon, “Quantum theory of a simple maser oscillator,” Phys. Rev. 161, 367–386 (1967).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Griebsch, D.

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Iga, K.

T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Ito, I.

Jin, P.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000).
[CrossRef]

Kasuya, T.

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Kim, E. B.

Kim, H.

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000).
[CrossRef]

Kimura, T.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

Ko, T. H.

Kobayashi, S.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

Kobayashi, Y.

Koyama, F.

T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Kuse, N.

Kwon, T. Y.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lee, C.-H.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000).
[CrossRef]

Li, X. K.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, F. Q.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Lv, X. Q.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

Mamedov, D.

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Mori, S.

T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Nemitz, N.

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Nomura, Y.

Ooi, B. S.

C. E. Dimas, H. S. Djie, and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth 288, 153–156 (2006).
[CrossRef]

Otsuka, K.

K. Otsuka and S. Tarucha, “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electron. 17, 1515–1521 (1981).
[CrossRef]

Ozawa, A.

Pantell, R. H.

R. H. Pantell, “The laser oscillator with an external signal,” Proc. IEEE 53, 474–477 (1965).
[CrossRef]

Park, C. Y.

Park, S. E.

Park, Y.-H.

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Prokhorov, V.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Schöder, R.

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Shaw, H. J.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Shidlovski, V.

Shimizu, T.

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].

Shimoda, K.

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].

Statz, H.

C. L. Tang and H. Statz, “Phase-locking of laser oscillators by injected signal,” J. Appl. Phys. 38, 323–324 (1967).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Su, C. D.

Sun, Z. Z.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tang, C. L.

C. L. Tang and H. Statz, “Phase-locking of laser oscillators by injected signal,” J. Appl. Phys. 38, 323–324 (1967).
[CrossRef]

Tarucha, S.

K. Otsuka and S. Tarucha, “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electron. 17, 1515–1521 (1981).
[CrossRef]

Ueda, Y.

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Wang, L. A.

Wang, Z. C.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

Wang, Z. G.

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Weyers, S.

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Wynands, R.

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Xu, B.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Yajima, T.

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].

Yakubovich, S.

Yamatoya, T.

T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Yee, D. S.

Zhang, Z. Y.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Electron. Lett. (2)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352–353 (1981).
[CrossRef]

Z. C. Wang, P. Jin, X. Q. Lv, X. K. Li, and Z. G. Wang, “High-power quantum dot superluminescent diode with integrated optical amplifier section,” Electron. Lett. 47, 1191–1193 (2011).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

K. Otsuka and S. Tarucha, “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electron. 17, 1515–1521 (1981).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067–1069 (2000).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang and H. Statz, “Phase-locking of laser oscillators by injected signal,” J. Appl. Phys. 38, 323–324 (1967).
[CrossRef]

J. Cryst. Growth (1)

C. E. Dimas, H. S. Djie, and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth 288, 153–156 (2006).
[CrossRef]

J. Lightwave Technol. (2)

L. A. Wang and C. D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” J. Lightwave Technol. 17, 2307–2315 (1999).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Yamatoya, S. Mori, F. Koyama, and K. Iga, “High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Metrologia (1)

V. Gerginov, N. Nemitz, S. Weyers, R. Schöder, D. Griebsch, and R. Wynands, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia 47, 65–79 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

J. P. Gordon, “Quantum theory of a simple maser oscillator,” Phys. Rev. 161, 367–386 (1967).
[CrossRef]

Proc. IEEE (1)

R. H. Pantell, “The laser oscillator with an external signal,” Proc. IEEE 53, 474–477 (1965).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other (1)

K. Shimoda, T. Yajima, Y. Ueda, T. Shimizu, and T. Kasuya, Quantum Electronics (Shokabo, 1972), Sects. 2.3 and 4.7 [in Japanese].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the experimental setup. The black and white arrows indicate the propagation directions of the slave and master lights, respectively. The path of the master light was superimposed onto that of the slave light using an OI2 optical isolator. The master-light and slave-light power between the LD and the OI2 are indicated by Pm and Ps, respectively.

Fig. 2.
Fig. 2.

Spectrum of emission from the SLD.

Fig. 3.
Fig. 3.

Black lines show the spectra of the slave light with power Ps=51mW for (a) master-light power Pm=0 (i.e., no master light injection), (b) Pm=0.3mW, (c) Pm=0.8mW, and (d) Pm=2.7mW. The pink (gray in the printed version) lines express smoothed curves for the broad component of the spectrum, bs(λ). Here, the smoothing in (b) was applied after removal of the laser mode components from the spectrum, while the raw spectra were smoothed for (c) and (d). The vertical axes are scaled so that the maximum power of the spectrum in (a) is 1.

Fig. 4.
Fig. 4.

(a) α ratios (i.e., those of incoherent light power to overall power), (b) FWHMs of the incoherent-light spectra, and (c) β values representing spectral roughness as a function of master-light power Pm. Here, the triangles, circles, and squares indicate cases with slave-light power Ps=15, 51, and 150 mW, respectively.

Metrics