Abstract

We demonstrate a polarization-independent distortion corrector fabricated using a polymer-dispersed liquid crystal (PDLC) cell placed on the intermediate image plane of an optical system. At low voltage, a hazy PDLC cell scatters the incident rays and redirects the off-axis propagated chief ray. The chief ray approaches the principal point of the lens element, thereby decreasing image distortion. At high voltage, the PDLC cell becomes transparent, thereby restoring the image distortion. The PDLC-based distortion corrector is an easy-to-fabricate universal device that can be applied to various optical systems. With a large lens diameter, the distortion of a PDLC-corrected image is approximately 1/5 of that of an uncorrected image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor & Francis, 1996).
  2. E. Hecht, Optics (Addison-Wesley, 2002).
  3. “Lens distortion correction: improve lens performance with in-camera adjustments,” retrieved http://www.digitalcameraworld.com/2013/07/08/lens-distortion-correction-how-to-improve-lens-performance-with-in-camera-adjustments/ .
  4. W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
    [CrossRef]
  5. C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
    [CrossRef]
  6. C. T. Hsieh, Y. F. Hsu, C. W. Chung, M. F. Chen, W. C. Su, and C. Y. Huang, “Distortion aberration correction device fabricated with liquid crystal lens array,” Opt. Express 21, 1937–1943 (2013).
    [CrossRef]
  7. J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).
  8. H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007), Vol. 3.
  9. “Mobile Phone Objective Camera Optical Design,” retrieved http://www.opli.net/opli_magazine/eo/2013/mobile-phone-objective-camera-optical-design.aspx .
  10. O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based pdlcs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
    [CrossRef]

2013 (1)

2011 (1)

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

2010 (2)

C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
[CrossRef]

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based pdlcs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
[CrossRef]

2005 (1)

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Baird, G.

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Blechinger, F.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007), Vol. 3.

Chen, C. H.

C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
[CrossRef]

Chen, C. Y.

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
[CrossRef]

Chen, M. F.

Chen, Y. W.

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

Chung, C. W.

Crawford, G. P.

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor & Francis, 1996).

Elouali, F.

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based pdlcs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
[CrossRef]

Gross, H.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007), Vol. 3.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2002).

Hsieh, C. T.

Hsu, Y. F.

Huang, C. Y.

Li, J.

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Lin, Y. H.

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Maschke, U.

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based pdlcs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
[CrossRef]

Peschka, M.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007), Vol. 3.

Ren, H. W.

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Su, W. C.

C. T. Hsieh, Y. F. Hsu, C. W. Chung, M. F. Chen, W. C. Su, and C. Y. Huang, “Distortion aberration correction device fabricated with liquid crystal lens array,” Opt. Express 21, 1937–1943 (2013).
[CrossRef]

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
[CrossRef]

Wang, Y. F.

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
[CrossRef]

Wu, S. T.

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Yang, S. S.

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

Yaroshchuk, O.

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based pdlcs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
[CrossRef]

Zügge, H.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007), Vol. 3.

Zumer, S.

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor & Francis, 1996).

J. Opt. (1)

W. C. Su, C. Y. Chen, Y. F. Wang, Y. W. Chen, and S. S. Yang, “Effect of a diffuser on distortion reduction for a virtual image projector,” J. Opt. 13, 105401 (2011).
[CrossRef]

J. SID (1)

J. Li, G. Baird, Y. H. Lin, H. W. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. SID 13, 1017–1026 (2005).

Opt. Commun. (1)

C. Y. Chen, W. C. Su, Y. F. Wang, and C. H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Opt. Commun. 283, 2798–2802 (2010).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based pdlcs by curing light intensity,” Opt. Mater. 32, 982–989 (2010).
[CrossRef]

Other (5)

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007), Vol. 3.

“Mobile Phone Objective Camera Optical Design,” retrieved http://www.opli.net/opli_magazine/eo/2013/mobile-phone-objective-camera-optical-design.aspx .

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks (Taylor & Francis, 1996).

E. Hecht, Optics (Addison-Wesley, 2002).

“Lens distortion correction: improve lens performance with in-camera adjustments,” retrieved http://www.digitalcameraworld.com/2013/07/08/lens-distortion-correction-how-to-improve-lens-performance-with-in-camera-adjustments/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Operation principle of the PDLC-based corrector (a) with applied voltage and (b) without voltage. In the figures, P indicates the principal point of lens 2.

Fig. 2.
Fig. 2.

Optical system demonstrating the distortion-correcting effects of the PDLC cell.

Fig. 3.
Fig. 3.

Definition of TV distortion.

Fig. 4.
Fig. 4.

Transmittance versus applied voltage curves of PDLC cells at various LC concentrations. Inset shows the image of the PDLC with an LC concentration of 70 wt. %.

Fig. 5.
Fig. 5.

(a) Barrel distortion and (b) pincushion distortion images corrected by PDLC cells with various LC concentrations and at various applied voltages.

Fig. 6.
Fig. 6.

TV distortions of the PDLC-corrected (a) barrel and (b) pincushion distortion images at various LC concentrations and applied voltages.

Fig. 7.
Fig. 7.

Calculated TV distortions of the (a) pincushion and (b) barrel images at various polarization angles. The LC concentration of the PDLC cell is 62.5 wt. %, whereas the applied voltage to the PDLC cell is 0 V. (b) and (c) show the corrected pincushion distortion images at 0° and 90°, respectively. (d) and (e) show corrected barrel distortion images at 0° and 90°, respectively.

Fig. 8.
Fig. 8.

(a) Diffuser-corrected pincushion distortion image captured with DC at a shutter time of 1/15s. (b) PDLC-corrected pincushion distortion image captured with DC at a shutter time of 1/15s. (c) Diffuser-corrected pincushion distortion image captured with DC at a shutter time of 2 s. The LC concentration of the PDLC cell is 62.5 wt. %, whereas the applied voltage to the PDLC cell is 2.5 V.

Fig. 9.
Fig. 9.

Pincushion distortion-correcting effect of the PDLC cell in an optical system similar to that shown in Fig. 2. (a) Original image without correction. (b) PDLC-corrected image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

TV distortion=ΔHH×100%,

Metrics