Abstract

ZnO nanowires, characterized with high melting points, are hard to assemble together with laser fusion. In order to build micro–nano structures with ZnO nanowires, a polymer film with a low melting point and high optical transparency is introduced as a substrate for ZnO nanowires to be deposited. A holographic optical tweezers system is used not only to manipulate ZnO nanowires, but also to melt the polymer film for the fixation of ZnO nanowires. By this method, micro–nano structures composed of ZnO nanowires are produced, which can be utilized as subwavelength optical waveguides.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Park and K. Yong, “Photoconductivity of vertically aligned ZnO nanoneedle array,” J. Vac. Sci. Technol. B 26, 1933–1936 (2008).
    [CrossRef]
  2. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242–246 (2006).
    [CrossRef]
  3. L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
    [CrossRef]
  4. C. Zhang, Y. S. Zhao, and J. Yao, “Optical waveguides at micro/nanoscale based on functional small organic molecules,” Phys. Chem. Chem. Phys. 13, 9060–9073 (2011).
    [CrossRef]
  5. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
    [CrossRef]
  6. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
    [CrossRef]
  7. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
    [CrossRef]
  8. T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004).
    [CrossRef]
  9. A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. M. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15, 11629–11639 (2007).
    [CrossRef]
  10. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005).
    [CrossRef]
  11. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
    [CrossRef]
  12. L. Shi, J. Li, T. Tao, and X. Wu, “Rotation of nanowires with radially higher-order Laguerre–Gaussian beams produced by computer-generated holograms,” Appl. Opt. 51, 6398–6402 (2012).
    [CrossRef]
  13. T. Tao, J. Li, Q. Long, and X. Wu, “3D trapping and manipulation of micro-particles using holographic optical tweezers with optimized computer-generated holograms,” Chin. Opt. Lett. 9, 120010 (2011).
    [CrossRef]
  14. Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
    [CrossRef]
  15. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
    [CrossRef]
  16. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
    [CrossRef]

2012 (1)

2011 (2)

T. Tao, J. Li, Q. Long, and X. Wu, “3D trapping and manipulation of micro-particles using holographic optical tweezers with optimized computer-generated holograms,” Chin. Opt. Lett. 9, 120010 (2011).
[CrossRef]

C. Zhang, Y. S. Zhao, and J. Yao, “Optical waveguides at micro/nanoscale based on functional small organic molecules,” Phys. Chem. Chem. Phys. 13, 9060–9073 (2011).
[CrossRef]

2009 (1)

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

2008 (1)

D. Park and K. Yong, “Photoconductivity of vertically aligned ZnO nanoneedle array,” J. Vac. Sci. Technol. B 26, 1933–1936 (2008).
[CrossRef]

2007 (1)

2006 (3)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242–246 (2006).
[CrossRef]

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

2005 (2)

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005).
[CrossRef]

2004 (1)

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

2001 (2)

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
[CrossRef]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

1998 (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[CrossRef]

1994 (1)

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Agarwal, R.

Campbell, A. I.

Carberry, D. M.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

Cheong, F.-C.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Cui, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

Dogterom, M.

Duan, X.

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
[CrossRef]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

Florin, E.-L.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Gibson, G. M.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

Grier, D. G.

Hong, J.-M.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Hörber, J. K. H.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[CrossRef]

Huang, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
[CrossRef]

Ikin, L.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

Ladavac, K.

Li, J.

Lieber, C. M.

R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005).
[CrossRef]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
[CrossRef]

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Long, Q.

Miles, M. J.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

Ni, Y.-H.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Padgett, M. J.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

Park, D.

D. Park and K. Yong, “Photoconductivity of vertically aligned ZnO nanoneedle array,” J. Vac. Sci. Technol. B 26, 1933–1936 (2008).
[CrossRef]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Pralle, A.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[CrossRef]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Roichman, Y.

Rühle, S.

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

Shi, L.

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Song, J.

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242–246 (2006).
[CrossRef]

Sow, C.-H.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Stelzer, E. H. K.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[CrossRef]

Switz, N. A.

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Tao, T.

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

van Blaaderen, A.

van der Horst, A.

van Vugt, L. K.

A. van der Horst, A. I. Campbell, L. K. van Vugt, D. A. M. Vanmaekelbergh, M. Dogterom, and A. van Blaaderen, “Manipulating metal-oxide nanowires using counter-propagating optical line tweezers,” Opt. Express 15, 11629–11639 (2007).
[CrossRef]

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

Vanmaekelbergh, D.

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

Vanmaekelbergh, D. A. M.

Wang, J.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

Wang, Z. L.

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242–246 (2006).
[CrossRef]

Webb, W. W.

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Wei, Q.

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
[CrossRef]

Wei, X.-W.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Wu, X.

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Yao, J.

C. Zhang, Y. S. Zhao, and J. Yao, “Optical waveguides at micro/nanoscale based on functional small organic molecules,” Phys. Chem. Chem. Phys. 13, 9060–9073 (2011).
[CrossRef]

Ye, Y.

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Yong, K.

D. Park and K. Yong, “Photoconductivity of vertically aligned ZnO nanoneedle array,” J. Vac. Sci. Technol. B 26, 1933–1936 (2008).
[CrossRef]

Yu, G.

Yu, T.

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Zhang, C.

C. Zhang, Y. S. Zhao, and J. Yao, “Optical waveguides at micro/nanoscale based on functional small organic molecules,” Phys. Chem. Chem. Phys. 13, 9060–9073 (2011).
[CrossRef]

Zhao, Y. S.

C. Zhang, Y. S. Zhao, and J. Yao, “Optical waveguides at micro/nanoscale based on functional small organic molecules,” Phys. Chem. Chem. Phys. 13, 9060–9073 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[CrossRef]

Chin. Opt. Lett. (1)

J. Vac. Sci. Technol. B (1)

D. Park and K. Yong, “Photoconductivity of vertically aligned ZnO nanoneedle array,” J. Vac. Sci. Technol. B 26, 1933–1936 (2008).
[CrossRef]

Mater. Sci. Eng. B (1)

Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B 121, 42–47 (2005).
[CrossRef]

Nano Lett. (1)

L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Lett. 6, 2707–2711 (2006).
[CrossRef]

Nanotechnology (1)

T. Yu, F.-C. Cheong, and C.-H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004).
[CrossRef]

Nat. Mater. (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[CrossRef]

Nature (1)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66–69 (2001).
[CrossRef]

New J. Phys. (1)

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[CrossRef]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

C. Zhang, Y. S. Zhao, and J. Yao, “Optical waveguides at micro/nanoscale based on functional small organic molecules,” Phys. Chem. Chem. Phys. 13, 9060–9073 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994).
[CrossRef]

Science (2)

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630–633 (2001).
[CrossRef]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242–246 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a holographic optical tweezers system.

Fig. 2.
Fig. 2.

Series of microscopy images shows that a ZnO nanowire is translated, rotated, and fixed with holographic optical tweezers. (a)–(c) The nanowire is translated; the white arrow in (a) denotes a protruding line on the film regarded as a reference position. (d)–(f) The nanowire is rotated about 90 deg around its geometric center. (g) The film is heated by three holographic optical tweezers distributed along the nanowire. (h) The nanowire is fixed on the film.

Fig. 3.
Fig. 3.

Three nanowires are trapped and controlled simultaneously.

Fig. 4.
Fig. 4.

Micro–nano structures consist of ZnO nanowires fixed on the polymer: (a) structure formed by connecting the ends of nanowires, and (b) structure with a nanowire aligned along the trap’s optical axis.

Fig. 5.
Fig. 5.

Arrows 1 and 2 indicate the positions of the light source and the observation point, respectively. (a) Built micro–nano structure. (b) Light propagation in the micro–nano structure.

Metrics