Abstract

The noise suppression of the autobalanced photoreceiver devised by Hobbs [Proc. SPIE 1376, 216 (1990)] had been determined to depend on the photocurrent ratio of reference beam to signal beam under the condition of constant signal beam photocurrent, and the best noise cancellation was suggested at a ratio close to 2. But in most applications, the available optical power has a limit. Therefore, to optimize the sensitivity of measurements, we should consider how to allocate the beam power in the case of fixed total optical power. In this paper, we measure the air Faraday rotation at different azimuth angles of beam polarization, which correspond to different photocurrent ratios. The signal-to-noise ratio at each photocurrent ratio is determined, and the best sensitivity appears at the photocurrent ratio of 1. This best sensitivity achieved is 3.02×108radHz1/2, which is about 1.3 times the shot noise limit. Our results are useful for sensitive optical measurements with the autobalanced photoreceiver.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Ingersoll and W. L. James, “A sensitive photoelectric method for measuring the Faraday effect,” Rev. Sci. Instrum. 24, 23–25 (1953).
    [CrossRef]
  2. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
    [CrossRef]
  3. C. B. Carlisle and D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef]
  4. P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
    [CrossRef]
  5. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
    [CrossRef]
  6. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
    [CrossRef]
  7. X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107–117 (2011).
    [CrossRef]
  8. C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
    [CrossRef]
  9. B. Brumfield and G. Wysocki, “Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions,” Opt. Express 20, 29727–29742 (2012).
    [CrossRef]
  10. “Nirvana Auto-Balanced Photoreceivers: Model 2007 & 2017 User’s Manual,” New Focus, 2002, p. 12.

2012 (1)

2011 (2)

X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107–117 (2011).
[CrossRef]

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

1997 (1)

1991 (1)

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

1990 (1)

P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
[CrossRef]

1989 (1)

1984 (1)

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

1953 (1)

L. R. Ingersoll and W. L. James, “A sensitive photoelectric method for measuring the Faraday effect,” Rev. Sci. Instrum. 24, 23–25 (1953).
[CrossRef]

Adams, H.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Brumfield, B.

Carlisle, C. B.

Chang, C. Y.

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

Chou, C.

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

Cooper, D. E.

Feller, B. E.

Haller, K. L.

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

Hobbs, P. C. D.

X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express 19, 107–117 (2011).
[CrossRef]

P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997).
[CrossRef]

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
[CrossRef]

Ingersoll, L. R.

L. R. Ingersoll and W. L. James, “A sensitive photoelectric method for measuring the Faraday effect,” Rev. Sci. Instrum. 24, 23–25 (1953).
[CrossRef]

James, W. L.

L. R. Ingersoll and W. L. James, “A sensitive photoelectric method for measuring the Faraday effect,” Rev. Sci. Instrum. 24, 23–25 (1953).
[CrossRef]

Jefferson, M.

Kalkert, P.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Knoesen, A.

Lin, C. E.

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

Miller, R. D.

Reinert, D.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Risk, W. P.

Shy, J. T.

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

Urban, W.

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Wang, L.

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

Wang, X.

Wysocki, G.

Appl. Opt. (1)

Appl. Phys. B (1)

H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
[CrossRef]

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

Rev. Sci. Instrum. (2)

C. Y. Chang, L. Wang, J. T. Shy, C. E. Lin, and C. Chou, “Sensitive Faraday rotation measurement with auto-balanced photodetection,” Rev. Sci. Instrum. 82, 063112 (2011).
[CrossRef]

L. R. Ingersoll and W. L. James, “A sensitive photoelectric method for measuring the Faraday effect,” Rev. Sci. Instrum. 24, 23–25 (1953).
[CrossRef]

Other (1)

“Nirvana Auto-Balanced Photoreceivers: Model 2007 & 2017 User’s Manual,” New Focus, 2002, p. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. Here, M: mirror; HWP: half-wave plate; PBS: polarizing beam splitter.

Fig. 2.
Fig. 2.

Measured RMS values of autobalanced signal ΔVAB, noise, and SNR versus photocurrent ratio IREF/ISIG.

Fig. 3.
Fig. 3.

Estimated relative SNR for absorption measurement versus photocurrent ratio IREF/ISIG.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PSIG(θ+Δθ)=PIcos2(θ+Δθ)PIcos2θ(PIsin2θ)Δθ,
PREF(θ+Δθ)=PIsin2(θ+Δθ)PIsin2θ+(PIsin2θ)Δθ.
PIcos2θg·PIsin2θ=0,
g=cos2θsin2θ.
ΔVAB(VTOTALsin2θ)(1+g)Δθ.
ΔVABVTOTALrΔθ.
ΔVABVSIGΔt.
ΔVABVTOTAL1+rΔt.

Metrics