Abstract

Often the tolerancing of an optical system is performed by treating the optical system as a black box in which the designer sets tolerances for perturbations and then runs a Monte Carlo analysis to determine the as-built performance. When the effects of the perturbations are not considered, the tolerances might result tighter than necessary, proper compensation might be missed, and manufacturing cost can be increased. By acquiring aberration sensitivity for each type of perturbation, an optical engineer can increase tolerances by ad hoc compensation. An aberration sensitivity evaluation can be performed quickly and can be incorporated into the initial lens design phase. A lens designer can find what surfaces or elements within the optical system will be problematic before any time-consuming Monte Carlo run is performed. In this paper we use aberration theory of plane symmetric systems to remove, to some useful extent, the black-box tolerancing approach and to provide some insights into tolerancing. The tolerance sensitivities that are analyzed are with respect to surface tilt, center thickness, index value, and radius. To analyze these perturbations, exact wavefront calculations are performed for the following aberrations: uniform astigmatism, uniform coma, linear astigmatism, distortion I, distortion II, spherical aberration, linear coma, quadratic astigmatism, and cubic distortion. We provide a discussion about how the aberration tolerancing analysis is useful.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry

Kevin P. Thompson, Tobias Schmid, Ozan Cakmakci, and Jannick P. Rolland
J. Opt. Soc. Am. A 26(6) 1503-1517 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription