Abstract

According to the expression for modulation transfer function obtained by solving the established 2D continuity equation, the resolution characteristics for reflection-mode exponential-doping and uniform-doping GaN photocathodes have been calculated and comparatively analyzed. These calculated results show that the exponential-doping structure can upgrade not only the resolution capability but also the quantum efficiency for a GaN photocathode. The improvement mechanism is different from the approach for high resolution applied by reducing Te and LD or increasing SV, which leads to low quantum efficiency. The main contribution factor of this improvement is that the mechanism that transports electrons toward the NEA surface is facilitated by the built-in electric field formed by this exponential-doping structure, and the corresponding lateral diffusion is reduced.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Sommer, Photoelectric Materials-Preparation, Properties and Uses (Science, 1968).
  2. W. Klein, M. Harder, and H. Pollehn, “Influence of backscattered electrons on the resolution of transmission secondary electron emitters,” Appl. Opt. 11, 2337–2339 (1972).
    [CrossRef]
  3. M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
    [CrossRef]
  4. R. L. Bell, Negative Electron Affinity Devices (Science, 1973).
  5. H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974).
    [CrossRef]
  6. R. U. Martinelli and D. G. Fisher, “The application of semiconductors with negative electron affinity surfaces to electron emission devices,” Proc. SPIE 62, 1339–1360 (1974).
  7. I. P. Csorba, “Recent advancements in the field of image intensification: the generation 3 wafer tube,” Appl. Opt. 18, 2440–2444 (1979).
    [CrossRef]
  8. H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, 1985), pp. 61–69.
  9. E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
    [CrossRef]
  10. J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
    [CrossRef]
  11. C. B. Johnson and K. L. Hallam, “An electron-lens for opaque photocathodes,” Proc. SPIE 32, 53–56 (1973).
  12. H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974).
    [CrossRef]
  13. A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
    [CrossRef]
  14. X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
    [CrossRef]
  15. Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
    [CrossRef]
  16. X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
    [CrossRef]
  17. J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013).
    [CrossRef]
  18. J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009).
    [CrossRef]
  19. J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).
  20. J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).
  21. J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
    [CrossRef]
  22. J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).
  23. Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
    [CrossRef]
  24. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
    [CrossRef]
  25. X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
    [CrossRef]
  26. I. P. Csorba, “Modulation transfer function of image tube lenses,” Appl. Opt. 16, 2647–2650 (1977).
    [CrossRef]
  27. D. G. Fisher and R. U. Martinelli, “Negative electron affinity materials for imaging devices,” Adv. Image Pick. Disp. 1, 101–106 (1974).
  28. X. H. Wang, “Photoemission performance of wurtzite structure GaN (0001) surface,” Ph.D. thesis (Nanjing University of Science & Technology, 2013), p. 51.

2013 (4)

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013).
[CrossRef]

2012 (1)

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

2011 (3)

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
[CrossRef]

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

2010 (3)

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

2009 (3)

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009).
[CrossRef]

1999 (1)

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

1979 (1)

1977 (1)

1974 (4)

H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974).
[CrossRef]

D. G. Fisher and R. U. Martinelli, “Negative electron affinity materials for imaging devices,” Adv. Image Pick. Disp. 1, 101–106 (1974).

H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974).
[CrossRef]

R. U. Martinelli and D. G. Fisher, “The application of semiconductors with negative electron affinity surfaces to electron emission devices,” Proc. SPIE 62, 1339–1360 (1974).

1973 (1)

C. B. Johnson and K. L. Hallam, “An electron-lens for opaque photocathodes,” Proc. SPIE 32, 53–56 (1973).

1972 (2)

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

W. Klein, M. Harder, and H. Pollehn, “Influence of backscattered electrons on the resolution of transmission secondary electron emitters,” Appl. Opt. 11, 2337–2339 (1972).
[CrossRef]

Allenson, M. B.

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

Bell, R. L.

R. L. Bell, Negative Electron Affinity Devices (Science, 1973).

Bender, E. J.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Chang, B. K.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
[CrossRef]

Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009).
[CrossRef]

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

Chang, Y. J.

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

Chen, X. L.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Cheng, H. C.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Csorba, I. P.

Dabiran, A. M.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Dinan, J. H.

H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974).
[CrossRef]

Du, X. Q.

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

Du, Y. J.

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Elam, J.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Estrera, J. P.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Feng, L.

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

Fisher, D. G.

D. G. Fisher and R. U. Martinelli, “Negative electron affinity materials for imaging devices,” Adv. Image Pick. Disp. 1, 101–106 (1974).

R. U. Martinelli and D. G. Fisher, “The application of semiconductors with negative electron affinity surfaces to electron emission devices,” Proc. SPIE 62, 1339–1360 (1974).

Ford, C. E.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Fu, J. T.

J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013).
[CrossRef]

Fu, R. G.

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Fu, X. Q.

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Gao, P.

X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
[CrossRef]

Giordana, A.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Glesener, J. W.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Guo, X. Y.

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

Hallam, K. L.

C. B. Johnson and K. L. Hallam, “An electron-lens for opaque photocathodes,” Proc. SPIE 32, 53–56 (1973).

Han, K. Y.

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

Hao, G. H.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Harder, M.

Hughes, H. R.

H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974).
[CrossRef]

Hull, J. S.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Jin, M. C.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Johnson, C. B.

C. B. Johnson and K. L. Hallam, “An electron-lens for opaque photocathodes,” Proc. SPIE 32, 53–56 (1973).

King, P. G. R.

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

Klein, W.

Koda, N. J.

H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974).
[CrossRef]

Lin, G. Y.

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

Lin, P. P.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Liu, B. B.

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

Mane, A.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Martinelli, R. U.

D. G. Fisher and R. U. Martinelli, “Negative electron affinity materials for imaging devices,” Adv. Image Pick. Disp. 1, 101–106 (1974).

R. U. Martinelli and D. G. Fisher, “The application of semiconductors with negative electron affinity surfaces to electron emission devices,” Proc. SPIE 62, 1339–1360 (1974).

McPhate, J. B.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Nico, A. J.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Niu, J.

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009).
[CrossRef]

Palmer, H. L.

H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974).
[CrossRef]

Pollehn, H.

Pollehn, H. K.

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, 1985), pp. 61–69.

Qian, Y. S.

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

Qiao, J. L.

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

Ren, L.

X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
[CrossRef]

Rowland, M. C.

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

Savoye, E. D.

H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974).
[CrossRef]

Shi, F.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Siegmund, O. H. W.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Sinor, T. W.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Smithson, R. H.

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

Sommer, A. H.

A. H. Sommer, Photoelectric Materials-Preparation, Properties and Uses (Science, 1968).

Steward, G. J.

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

Syms, C. H. A.

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

Thoman, D. L.

H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974).
[CrossRef]

Tremsin, A. S.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Vallerga, J. V.

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

Wang, X. H.

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
[CrossRef]

X. H. Wang, “Photoemission performance of wurtzite structure GaN (0001) surface,” Ph.D. thesis (Nanjing University of Science & Technology, 2013), p. 51.

Wei, X.

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

Xiong, Y. J.

Xu, J. T.

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

Xu, Y.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Yan, L.

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

Yang, Y. F.

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Yang, Z.

J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009).
[CrossRef]

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

Zhang, J. J.

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Zhang, S. C.

J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013).
[CrossRef]

Zhang, T. M.

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

Zhang, Y. J.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

J. Niu, Y. J. Zhang, B. K. Chang, Z. Yang, and Y. J. Xiong, “Influence of exponential doping structure on the performance of GaAs photocathodes,” Appl. Opt. 48, 5445–5450 (2009).
[CrossRef]

Zhao, J.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Zheng, G. Q.

J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013).
[CrossRef]

Zou, J. J.

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

Y. J. Zhang, J. Niu, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

Acta Phys. Sin. (2)

J. L. Qiao, B. K. Chang, X. Q. Du, J. Niu, and J. J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Acta Phys. Sin. 59, 2855–2859 (2010) (in Chinese).

J. L. Qiao, B. K. Chang, Y. S. Qian, X. Q. Du, X. H. Wang, and X. Y. Guo, “Quantum efficiency recovery of reflection-mode NEA GaN photocathode,” Acta Phys. Sin. 60, 017903 (2011) (in Chinese).

Adv. Image Pick. Disp. (1)

D. G. Fisher and R. U. Martinelli, “Negative electron affinity materials for imaging devices,” Adv. Image Pick. Disp. 1, 101–106 (1974).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

X. H. Wang, B. K. Chang, L. Ren, and P. Gao, “Influence of the p-type doping concentration on reflection-mode GaN photocathode,” Appl. Phys. Lett. 98, 082109 (2011).
[CrossRef]

Chin. Phys. Lett. (1)

J. Niu, Z. Yang, and B. K. Chang, “Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathode,” Chin. Phys. Lett. 26, 104202 (2009).
[CrossRef]

J. Appl. Phys. (2)

Y. J. Zhang, J. J. Zou, J. Niu, J. Zhao, and B. K. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Electron. Mater. (1)

H. R. Hughes, E. D. Savoye, and D. L. Thoman, “Application of negative electron affinity materials to imaging devices,” J. Electron. Mater. 3, 9–23 (1974).
[CrossRef]

J. Phys. D (1)

M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, “An improved GaAs transmission photocathode,” J. Phys. D 5, L89–L92 (1972).
[CrossRef]

Opt. Commun. (1)

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Optik (2)

J. T. Fu, G. Q. Zheng, and S. C. Zhang, “Study on the influence of recombination velocity to quantum efficiency of reflection-mode GaAs photocathode,” Optik 124, 1862–1864 (2013).
[CrossRef]

X. Q. Fu, X. H. Wang, Y. F. Yang, B. K. Chang, Y. J. Du, J. J. Zhang, and R. G. Fu, “Optimizing GaN photocathode structure for higher quantum efficiency,” Optik 123, 765–768 (2012).
[CrossRef]

Proc. SPIE (7)

J. J. Zou, G. Y. Lin, X. Wei, L. Feng, Z. Yang, and B. K. Chang, “Activation experiment of exponential-doping NEA GaAs photocathodes,” Proc. SPIE 7384, 7384L (2009).

E. J. Bender, J. P. Estrera, C. E. Ford, A. Giordana, J. W. Glesener, P. P. Lin, A. J. Nico, T. W. Sinor, and R. H. Smithson, “High reliability GaAs image intensifier with unfilmed microchannel plate,” Proc. SPIE 3749, 713–714 (1999).
[CrossRef]

J. T. Xu, L. Yan, Y. J. Chang, K. Y. Han, B. B. Liu, and T. M. Zhang, “Mechanism analysis of Gen III LLL Image Intensifier GaAs cathode photoelectric emission disability,” Proc. SPIE 8912, 891213 (2013).
[CrossRef]

C. B. Johnson and K. L. Hallam, “An electron-lens for opaque photocathodes,” Proc. SPIE 32, 53–56 (1973).

H. L. Palmer, N. J. Koda, and J. H. Dinan, “Image converter with III-V compound reflective mode photocathode,” Proc. SPIE 42, 31–34 (1974).
[CrossRef]

A. S. Tremsin, J. S. Hull, O. H. W. Siegmund, J. B. McPhate, J. V. Vallerga, A. M. Dabiran, A. Mane, and J. Elam, “Opaque gallium nitride photocathodes in UV imaging detectors with microchannel plates,” Proc. SPIE 8859, 88590X (2013).
[CrossRef]

R. U. Martinelli and D. G. Fisher, “The application of semiconductors with negative electron affinity surfaces to electron emission devices,” Proc. SPIE 62, 1339–1360 (1974).

Other (4)

A. H. Sommer, Photoelectric Materials-Preparation, Properties and Uses (Science, 1968).

H. K. Pollehn, “Performance and reliability of third-generation image intensifiers,” in Advances in Electronics and Electron Physics, P. W. Hawkes, ed. (Academic, 1985), pp. 61–69.

R. L. Bell, Negative Electron Affinity Devices (Science, 1973).

X. H. Wang, “Photoemission performance of wurtzite structure GaN (0001) surface,” Ph.D. thesis (Nanjing University of Science & Technology, 2013), p. 51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics