Abstract

With the adoption of polycarbonate lens material for injection molding of greater accuracy and at lower costs, polycarbonate has become very suitable for mass production of more economical products, such as diving goggles. However, with increasing requirements for visual quality improvement, lenses need to have not only refractive function but also thickness and spherical aberration, which are gradually being taken more seriously. For a high-power-composite lens, meanwhile, the thickness cannot be substantially reduced, and there is also the issue of severe spherical aberration at the lens edges. In order to increase the added value of the product without changing the material, the present research applied the eye model and Taguchi experiment method, combined with design optimization for hyperbolic-aspherical lens, to significantly reduce the lens thickness by more than 30%, outperforming the average thickness reduction in general aspherical lens. The spherical aberration at the lens edges was also reduced effectively during the optimization process for the nonspherical lens. Prototypes made by super-finishing machines were among the results of the experiment. This new application can be used in making a large amount of injection molds to substantially increase the economic value of the product.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aspherical lens design using hybrid neural-genetic algorithm of contact lenses

Chih-Ta Yen and Jhe-Wen Ye
Appl. Opt. 54(28) E88-E93 (2015)

Customized computer models of eyes with intraocular lenses

P. Rosales and S. Marcos
Opt. Express 15(5) 2204-2218 (2007)

Analytical tools for customized design of monofocal intraocular lenses

Sergio Barbero and Susana Marcos
Opt. Express 15(14) 8576-8591 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (9)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription