Abstract

The aim of this paper is to develop a straightforward rigorous and flexible computational method to determine the coordinate points on an aspheric surface. The computational method chosen is based on the basic slope-point form of a straight-line equation [slope-point method (SPM)]. The practical instrumental example chosen to illustrate this method is a rotationally symmetric catadioptric collimator for a light-emitting diode (LED) source. This optical system has both a refractive and a totally internally reflective aspheric surface. It is a particularly illuminating example because it requires careful computational attention to the smooth transition between the refracting inner zones and the reflective outer zones of the aperture. The chosen SPM computational method deals satisfactorily with the transition points at the junction between the refractive and total internal reflecting (TIR) zones of the collimator. As part of this study, the effect of the position of the start point of the SPM surface evolution for the TIR zones of the collimator emerges as being particularly important, and the details of this are discussed. Finally, an extension of the basic SPM-based method is used to generalize the development of the catadioptric collimator surfaces to illustrate this general algorithm for aspheric surface design for an extended LED light source.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (22)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription