Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-step resonant diffraction grating designed for three-color separation in Fresnel diffraction region

Not Accessible

Your library or personal account may give you access

Abstract

A two-step resonant diffraction grating is designed to separate the distributions of the wavelengths of 633, 532, and 488 nm in the Fresnel diffraction field using an analytical solution of the modal method, which can give a physical explanation for mode propagation in the grating region and interference at the interfaces. The energy efficiencies are 76.1% for 633 nm, 83.5% for 532 nm, and 75.6% for 488 nm at TE polarizations. The field distributions are captured by a color CMOS detector with a microscope, and the experimental results show the grating has a good color-separation performance.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Color separation of high-density dielectric rectangular grating in the Fresnel diffraction region

Yue Fang, Qiaofeng Tan, Mingqian Zhang, and Guofan Jin
Appl. Opt. 51(12) 2172-2177 (2012)

Fresnel diffraction of fractal grating and self-imaging effect

Junhong Wang, Wei Zhang, Yuwei Cui, and Shuyun Teng
Appl. Opt. 53(10) 2105-2111 (2014)

Design and investigation of color separation diffraction gratings

L. L. Doskolovich, N. L. Kazanskiy, S. N. Khonina, R. V. Skidanov, N. Heikkilä, S. Siitonen, and J. Turunen
Appl. Opt. 46(15) 2825-2830 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.