Abstract

The size of the aperture stop of a lens is a major parameter to define, e.g., the depth of focus of an optical imaging system. In conventional systems, totally absorbing apertures are generally assumed. Their optical performance can be easily described by a geometric ray model. We propose an extended model to estimate the depth of focus with respect to a nontotally absorbing circular aperture, which may correspond to new concepts for tunable apertures, in particular for micro-optical systems. We present specifications to analyze and optimize the performance of those systems and verify the theoretical model by experimental depth of focus measurements with a partly transparent aperture.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Dependence of depth of focus on spherical aberration of optical systems

Antonín Mikš and Jiří Novák
Appl. Opt. 55(22) 5931-5935 (2016)

Spherical aberration of an optical system and its influence on depth of focus

Antonín Mikš and Petr Pokorný
Appl. Opt. 56(17) 5099-5105 (2017)

Depth of focus of optical systems with a small amount of spherical aberration

Claudio Rivolta
Appl. Opt. 29(22) 3249-3254 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription