Abstract

Modification of single-walled carbon nanotubes (SWNTs) on the surface of monocrystalline silicon solar cells was investigated. The modification was realized by dropping a well-distributed mixture of SWNTs and ethanol with different dosages on the surface of monocrystalline silicon solar cells in the same effective area. The experimental results showed that the increasing rates of conversion efficiency, short-circuit current, and fill factor were 4.37%, 2.18%, and 2.11%, respectively; the open circuit voltage and series resistance decreased by 0.11% and 9.37% compared with the bare solar cell without an antireflection (AR) layer, when the modification reached the best state by dropping a 0.5 mL mixture solution with a concentration of 0.08g/L. With the energy-band diagrams of the heterojunction and p-n junction, the principles of the modification of SWNTs on monocrystalline silicon solar cells and the reasons for the change of electrical parameters were analyzed theoretically. Through experiments and theoretical analyses, the modification of SWNTs on solar cells is a potential and effective way to improve the performance of solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission

Barmak Heshmat, Hamid Pahlevaninezhad, Matthew Craig Beard, Chris Papadopoulos, and Thomas Edward Darcie
Opt. Express 19(16) 15077-15089 (2011)

Light trapping in ultrathin 25  μm exfoliated Si solar cells

Mohamed M. Hilali, Sayan Saha, Emmanuel Onyegam, Rajesh Rao, Leo Mathew, and Sanjay K. Banerjee
Appl. Opt. 53(27) 6140-6147 (2014)

Ultra-low reflection porous silicon nanowires for solar cell applications

A. Najar, J. Charrier, P. Pirasteh, and R. Sougrat
Opt. Express 20(15) 16861-16870 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription